Construction of a PH-curve of space by orthogonal projections of its hodograph

Authors

DOI:

https://doi.org/10.25206/1813-8225-2025-196-5-11

Keywords:

PH-curves, рythagorean hodographs, polynomials, orthogonal projection, composite curve, smoothness of connection.

Abstract

In modern geometric modeling, a class of plane and spatial PH-curves (рythagorean hodograph curves) is known, which were theoretically substantiated by mathematician Rida T. Farouki in 2007. PH-curves have a unique property that is important in solving many different practical problems, namely: the "parametric speed" of these curves, i.e. the derivative of the arc length with respect to the curve parameter, is a polynomial (or rational) function of the parameter. This property is due to the fact that the coordinate components of the hodograph of the PH–curve are elements of the Pythagorean (n+1)-tuple of coordinate polynomials.

Due to this property, PH-curves are in demand in solving various practical problems: generating trajectories for UAVs (unmanned aerial vehicles), optimizing the path of mobile robots, calculating segments of the axis of a road that are optimal in shape and length, etc. etc. In the theory of spatial PH-curves, algorithms for their analytical construction have been developed. In this paper, an approach to constructing these curves is proposed, based on the theory of plane PH-curves and implemented by sequentially constructing imagesprojections of spatial PH-curves on two coordinate planes. That is, solving the spatial construction problem is reduced to solving two problems of sequential construction on coordinate planes.

Numerical examples are given that demonstrate the efficiency of the proposed approach. At the same time, the calculation algorithms are simpler than in the case of the known spatial analytical approach. In the direction of developing the proposed approach, numerical examples of constructing a spatial composite PH-curve by smoothness C1 are given.

Downloads

Download data is not yet available.

Author Biographies

Panchuk Konstantin Leonidovich, Omsk State Technical University, Omsk

Doctor of Technical Sciences, Associate Professor, Professor of Engineering Geometry and CAD Department, Omsk State Technical University (OmSTU), Omsk.

Myasoedova Tatyana Mikhaylovna, Omsk State Technical University, Omsk

Candidate of Technical Sciences, Senior Lecturer of Engineering Geometry and CAD Department, OmSTU, Omsk.

Lyubchinov Evgeniy Vladimirovich, Omsk State Technical University, Omsk

Candidate of Technical Sciences, Associate Professor of Engineering Geometry and CAD Department, OmSTU, Omsk.

References

(1). Farouki R. T. Pythagorean-hodograph curves: Algebra and geometry inseparable. Germany: Springer, 2008. 729 p. DOI: 10.1007/978-3-540-73398-0. ISBN 978-3-540-73397-3.

(2). Farouki R. T., Sakkalis T. Pythagorean-hodograph space curves. Advances in Computational Mathematics. 1994. No. 2. P. 41–66. DOI: 10.1007/BF02519035.

(3). Pottmann H. Curve design with rational Pythagorean-hodograph curves. Advances in Computational Mathematics. 1995. No. 3. P. 147–170. DOI: 10.1007/BF03028365.

(4). Farouki R. T. Arc lengths of rational Pythagorean-hodograph curves. Computer Aided Geometric Design. 2015. No. 34. P. 1–4. DOI: 10.1016/j.cagd.2015.03.007.

(5). Farouki R. T. The elastic bending energy of Pythagorean-hodograph curves. Computer Aided Geometric Design. 1996. No. 13. P. 227–241. DOI: 10.1016/0167-8396(95)00024-0.

(6). Винокурский Д. Л., Ганьшин К. Ю., Мезенцева О. С. [и др.]. Планирование траектории группы беспилотных летательных аппаратов с использованием годографа Пифагора и составных кривых Бернштейна-Безье на плоскости // Вестник КРАУНЦ. Физико-математические науки. 2020. Т. 31, № 2. С. 70–78. DOI: 10.26117/2079-6641-2020-31-2-70-78. EDN: DWGUPX.

Vinokurskiy D. L., Gan’shin K. Yu., Mezentseva O. S. [et al.]. Planirovaniye trayektorii gruppy bespilotnykh letatel’nykh apparatov s ispol’zovaniyem godografa Pifagora i sostavnykh krivykh Bernshteyna-Bez’ye na ploskosti [The planning of the trajectory of UAV group with the performance of pythagorean hodograph and Bernstein-Bezier composite curves in the plane]. Vestnik KRAUNTs. Fiziko-matematicheskiye nauki. Bulletin KRASEC. Physical and Mathematical Sciences. Vol. 31, no. 2. P. 70–78. DOI: 10.26117/2079-6641-2020-31-2-70-78. EDN: DWGUPX. (In Russ.).

(7). Farouki R. T. Pythagorean-hodograph curves in practical use. Geometry Processing for Design and Manufacturing. Society for Industrial and Applied Mathematics. 1992. P. 3–33.

(8). Shah M. A., Aouf N. 3D cooperative Pythagorean hodograph path planning and obstacle avoidance for multiple UAVs. IEEE 9th International Conference on Cybernetic Intelligent Systems, CIS. 2010. P. 1–6. DOI: 10.1109/UKRICIS.2010.5898124.

(9). Vinokursky D. L., Mezentseva O. S., Samoylov Ph. V. [et al.]. Model predictive control for path planning of UAV group. IOP Conference Series: Materials Science and Engineering: III International Scientific Conference. Krasnoyarsk: IOP Publishing Ltd. 2021. DOI: 10.1088/1757-899X/1155/1/012092.

(10). Ганьшин К. Ю., Винокурский Д. Л., Мезенцева О. С. [и др.]. Разработка метода оптимизации траектории облета среды с препятствиями на основе кривых Безье с годографом Пифагора // Инженерный вестник Дона. 2023. № 7(103). С. 156–165. EDN: KRTRRN.

Gan’shin K. Yu., Vinokurskiy D. L., Mezentseva O. S. [et al.]. Razrabotka metoda optimizatsii trayektorii obleta sredy s prepyatstviyami na osnove krivykh Bez’ye s godografom Pifagora [Development of a method for optimizing the trajectory of a obstacle-free environment based on Bezier curves with a Pythagorean hodograph]. Inzhenernyy vestnik Dona. Engineering Journal of Don. 2023. No. 7(103). P. 156–165. EDN: KRTRRN. (In Russ.).

(11). Винокурский Д. Л., Ганьшин К. Ю., Мезенцева О. С. [и др.]. Генерация траекторий оптимальных кривых беспилотного летательного аппарата для обхода статического препятствия // Инженерный вестник Дона. 2021. № 9(81). С. 169–181. EDN: LPFIMQ.

Vinokurskiy D. L., Gan’shin K. Yu., Mezentseva O. S. [et al.]. Generatsiya trayektoriy optimal’nykh krivykh bespilotnogo letatel’nogo apparata dlya obkhoda staticheskogo prepyatstviya [Generating trajectories of optimal curves of an unmanned aerial vehicle to bypass a static obstacle]. Inzhenernyy vestnik Dona. Engineering Journal of Don. 2021. No. 9(81). P. 169–181. EDN: LPFIMQ. (In Russ.).

(12). Bezawada H., Woods C., Vikas V. Shape estimation of soft manipulators using piecewise continuous Pythagorean-hodograph curves. American Control Conference (ACC). 2022. P. 2905–2910. DOI: 10.23919/ACC53348.2022.9867270.

(13). Bruyninckx H., Reynaerts D. Path planning for mobile and hyper-redundant robots using Pythagorean-hodograph curves. Advanced Robotics: 8th International Conference. 1997. P. 595–600. DOI: 10.1109/ICAR.1997.620243.

(14). Farouki R. T., Knez M., Vitrih V. [et al.]. Planar projections of spatial Pythagorean-hodograph curves. Computer Aided Geometric Design. 2021. Vol. 91. P. 102049. DOI: 10.1016/j.cagd.2021.102049.

(15). Panchuk K. L., Myasoedova T. M., Rogoza Y. A. Spatial spline construction through the Monge model. CEUR Workshop Proceedings. 2020. Vol. 2744. P. 60-1–60-11. DOI: 10.51130/graphicon-2020-2-3-60.

(16). Корчагин Д. С., Панчук К. Л. Программа «Вычисление кривизны и кручения пространственной кривой линии по ее ортогональным проекциям» // Хроники объединённого фонда электронных ресурсов «Наука и образование». 2014. Т. 1, № 2 (57). С. 60. EDN: SXMEQB.

Korchagin D. S., Panchuk K. L. Programma “Vychisleniye krivizny i krucheniya prostranstvennoy krivoy linii po eye ortogonal’nym proyektsiyam” [The program “Calculating the curvature and torsion of the dimensional curve based on its orthogonal projections”]. Khroniki ob”yedinennogo fonda elektronnykh resursov “Nauka i obrazovaniye”. 2014. Vol. 1, no. 2 (57). P. 60. EDN: SXMEQB. (In Russ.).

Published

2025-11-28

How to Cite

[1]
Panchuk К.Л., Myasoedova Т.М. and Lyubchinov Е.В. 2025. Construction of a PH-curve of space by orthogonal projections of its hodograph. Omsk Scientific Bulletin. 4(196) (Nov. 2025), 5–11. DOI:https://doi.org/10.25206/1813-8225-2025-196-5-11.

Issue

Section

Mechanical Engineering

Most read articles by the same author(s)