Analysis of instantaneous states of the output link of anthropomorphic robot mechanism using geometric modeling methods
DOI:
https://doi.org/10.25206/1813-8225-2025-195-5-12Keywords:
mechanisms of manipulators, instantaneous states of mechanisms, vector of generalized velocities, graphical constructions of the velocity plane, velocity beam, computer modeling of the movements of anthropomorphic robots, synthesis of manipulator movements, restricted areasAbstract
The analysis of instantaneous states of the moving system connected with the output link of the anthropomorphic robot is carried out based on the use of graphical constructions performed on the frontal and horizontal projections. The constructions of the velocity plane and the velocity beam are performed for the obtained instantaneous values of generalized velocities using the example of the given synthesis of small motions of the robot mechanism. The synthesis of movements is based on the use of matrices of partial gear ratios using the criterion of minimizing the quadratic functional of the volume of movement. The graphical analysis of the components of the vectors of absolute linear velocities of three points of the moving system made it possible to determine the method for calculating intermediate configurations of the arm of the anthropomorphic robot based on the use of weight coefficients of generalized velocities. The results of calculating the test task in computer modeling of the movement of the anthropomorphic robot are presented.
Downloads
References
(1) Zheng X., Han Y., Liang J. Anthropomorphic motion planning for multi-degree-of-freedom arms. Frontiers in Bioengineering and Biotechnology. 2024. P. 1–16. DOI: 10.3389/fbioe.2024.1388609.
(2). Притыкин Ф. Н. Виртуальное моделирование движений роботов, имеющих различную структуру кинематических цепей: моногр. Омск: Изд-во ОмГТУ, 2014. 172 с. EDN: RVBBIB.
Pritykin F. N. Virtual’noye modelirovaniye dvizheniy robotov, imeyushchikh razlichnuyu strukturu kinematicheskikh tsepey [Virtual simulation of robot movements with different kinematic chain structures]. Omsk, 2014. 172 p. EDN: RVBBIB. (In Russ.).
(3). Корендясев А. И., Саламандра Б. Л., Тывес Л. И. Манипуляционные системы роботов. Москва: Машиностроение, 1989. 472 с. ISBN 5-217-00461-4.
Korendyasev A. I., Salamandra B. L., Tyves L. I. Manipulyatsionnyye sistemy robotov [Robot manipulation systems]. Moscow, 1989. 472 p. ISBN 5-217-00461-4. (In Russ.).
(4). Кобринский А. А., Кобринский А. Е. Манипуляционные системы роботов. Москва: Наука, 1985. 343 c.
Kobrinskiy А. А., Kobrinskiy А. E. Manipulyatsionnyye sistemy robotov [Robot manipulation systems]. Moscow, 1985. 343 p. (In Russ.).
(5). Kim H., Li Z., Milutinovic D., Rosen J. [et al.]. Resolving the redundancy of aseven dof wearable robotic system based on kinematic and dynamic constraint. 2012 IEEE International Conference on Robotics and Automation. 2012. P. 305–310. DOI: 10.1109/icra.2012.6224830.
(6). Zacharias F., Schlette C., Schmidt F. [et al.]. Making planned paths look more human-like in humanoid robot manipulation planning. Proceedings – IEEE International Conference on Robotics and Automation. 2011. DOI: 10.1109/ICRA.2011.5979553.
(7). Yamane K. Kinematic redundancy resolution for humanoid robots by humanmotion database. IEEE Robotics Automation Lett. 2020. Vol. 5 (4). P. 6948–6955. DOI: 10.1109/lra. 2020.3026972.
(8). Kim S., Kim C., Park J. H. Human-like arm motion generation for humanoid robots using motion capture database. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2006. P. 3486–3491. DOI: 10.1109/iros.2006.282591.
(9). Huang Zhang H. T., Yang C., Chen C. L. P. Motor learning and generalization using broad learning adaptive neural control. IEEE Transactions on Industrial Electronics. 2020. Vol. 67 (10). P. 8608–8617. DOI: 10.1109/tie.2019.2950853.
(10). Nagahama K., Demura S., Yamazaki K. Robot learning of tool manipulation based on visual teaching with mitate expression. Advanced Robotics. 2021.Vol. 35 (12). P. 741–755. DOI: 10.1080/01691864.2021.1914724.
(11). Deng M., Li Z., Kang Y. [et al.]. A learning-based hierarchical control scheme for an exoskeleton robot in human–robot cooperative manipulation. IEEE Transactions on Cybernetics. 2020. Vol. 50 (1). P. 112–125. DOI: 10.1109/tcyb.2018. 2864784.
(12). Sasagawa A., Sakaino S., Tsuji T. Motion generation using bilateral control-based imitation learning with autoregressive learning. IEEE Access. 2021. Vol. 9. P. 20508–20520. DOI: 10.1109/access.2021.3054960.
(13). Yang A., Chen Y., Naeem W., Fei M. Humanoid motion planning of robotic arm based on human arm action feature and reinforcement learning. Mechatronics. 2021. Vol. 78. 102630. DOI:10.1016/j.mechatronics.2021.102630.
(14). Qian K., Liu H., Valls Miro J. [et al.]. Hierarchical and parameterized learning of pick-and-place manipulation from under-specified human demonstrations. Advanced Robotics. 2020. Vol. 34 (13). P. 858–872. DOI: 10.1080/01691864.2020.1778523.
(15). Lu Z., Wang N., Li Q., Yang C. A trajectory and force dual-incremental robot skill learning and generalization framework using improved dynamical movement primitives and adaptive neural network control. 2023. Neurocomputing. Vol. 521 (5). P. 146–159. DOI: 10.1016/j.neucom.2022.11.076.
(16). Лучшие симуляторы роботов. URL: https://formant.io/blog/best-robot-simulators/ (дата обращения: 14.02.2025).
Luchshiye simulyatory robotov [Best robot simulators]. URL: https://formant.io/blog/best-robot-simulators/ (accessed: 14.02.2025). (In Russ.).
(17). Сиразетдинов Р. Т., Деваев В. М., Камалов А. Р., Кацевман Е. М. Программный комплекс моделирования и виртуализации антропоморфного робота AR-601 на основе систем ROS И GAZEBO // Имитационное моделирование. Теория и практика: тр. Седьмой всерос. науч.-практ. конф. В 2 т. Москва, 2015. Т. 2. C. 328–331.
Sirazetdinov R. T., Devayev V. M., Kamalov A. R., Katsevman E. M. Programmnyy kompleks modelirovaniya i virtualizatsii antropomorfnogo robota AR-601 na osnove sistem ROS I GAZEBO [Software package for modeling and virtualization of the AR-601 anthropomorphic robot based on the ROS and GAZEBO systems]. Imitatsionnoye Modelirovaniye. Teoriya i Praktika. In 2 vols. Moscow, 2015. Vol. 2. P. 328–331. (In Russ.).
(18). Артоболевский И. И. Теория пространственных механизмов. Москва; Ленинград: ОНТИ, 1937. 236 с.
Artobolevskiy I. I. Teoriya prostranstvennykh mekhanizmov [Theory of spatial mechanisms]. Moscow; Leningrad, 1937. 236 p. (In Russ.).
(19). Диментберг Ф. М. Теория винтов и ее приложения. Москва: Наука, 1978. 328 с.
Dimentberg F. M. Teoriya vintov i eye prilozheniya [Theory of screws and its applications]. Moscow, 1978. 328 p. (In Russ.).
(20). Мерцалов Н. И. Теория пространственных механизмов. Москва: Машгиз, 1951. 206 с.
Mertsalov N. I. Teoriya prostranstvennykh mekhanizmov [Theory of spatial mechanisms]. Moscow, 1951. 206 p. (In Russ.).
(21). Тевлин А. М., Притыкин Ф. Н. Геометрический метод определения мгновенной винтовой оси при сложении трех винтовых движений // Современные проблемы динамики машин и их синтез. Москва: Изд-во МАИ, 1986. C. 4–8.
Tevlin A. M., Pritykin F. N. Geometricheskiy metod opredeleniya mgnovennoy vintovoy osi pri slozhenii trekh vintovykh dvizheniy [Geometric method for determining the instantaneous screw axis by adding three screw motions]. Sovremennyye problemy dinamiki mashin i ikh sintez. Modern Problems of Machine Dynamics and Their Synthesis. Moscow, 1986. P. 4–8. (In Russ.).
(22). Притыкин Ф. Н., Кайбышев А. В. Анализ мгновенных состояний выходного звена шестизвенного пространственного манипулятора с помощью построения скоростной плоскости на комплексном чертеже // Приложение к журналу «Омский научный вестник». Омск: Изд-во ОмГТУ, 1998. С. 36–44.
Pritykin F. N., Kaybyshev A. V. Analiz mgnovennykh sostoyaniy vykhodnogo zvena shestizvennogo prostranstvennogo manipulyatora s pomoshch’yu postroyeniya skorostnoy ploskosti na kompleksnom chertezhe [Analysis of instantaneous states of the output link of a six-link spatial manipulator by the construction of a velocity plane on a complex drawing]. Prilozheniye k zhurnalu «Omskiy nauchnyy vestnik». Omsk Scientific Bulletin Supplement. Omsk, 1998. P. 36–44. (In Russ.).
(23). Афонин В. Л., Макушкин В. А. Интеллектуальные робототехнические системы. Москва: Интернет-университет информационных технологий, 2005. 208 c. ISBN 5-9556-0024-8. EDN: SUIEOF.
Afonin V. L., Makushkin V. A. Intellektual’nyye robototekhnicheskiye sistemy [Intelligent robotic systems]. Moscow, 2005. 208 p. ISBN 5-9556-0024-8. EDN: SUIEOF. (In Russ.).
Published
How to Cite
Issue
Section
License
Non-exclusive rights to the article are transferred to the journal in full accordance with the Creative Commons License BY-NC-SA 4.0 «Attribution-NonCommercial-ShareAlike 4.0 Worldwide License (CC BY-NC-SA 4.0»)