Machine state classification of electric track circuit by means of logistic regression

Authors

  • Дмитрий Владимирович Борисенко Omsk State Transport University, Omsk, Russia
  • Илона Вадимовна Присухина Omsk State Transport University, Omsk, Russia
  • Сергей Александрович Лунёв Omsk State Transport University, Omsk, Russia

DOI:

https://doi.org/10.25206/1813-8225-2018-160-67-72

Keywords:

railway signaling, electric track circuit, machine learning, classification, logistic regression

Abstract

Electric track circuits are widely used on railways as sensors providing position of a train and information about physical integrity of rails. A modern railway monitoring system is required to have automatic data analysis capabilities. For a track circuit this functionality can be implemented as automatic state classification. To perform this task, we developed an algorithm based on logistic regression. In this article we describe basic principles of the algorithm and machine learning techniques that are applied.

Downloads

Download data is not yet available.

Author Biographies

Дмитрий Владимирович Борисенко, Omsk State Transport University, Omsk, Russia

кандидат технических наук, доцент (Россия), доцент кафедры «Автоматика и телемеханика».

Илона Вадимовна Присухина, Omsk State Transport University, Omsk, Russia

аспирантка кафедры «Автоматика и телемеханика».

Сергей Александрович Лунёв, Omsk State Transport University, Omsk, Russia

кандидат технических наук, доцент (Россия), заведующий кафедрой «Автоматика и телемеханика».

Downloads


Abstract views: 17

Published

2018-09-20

How to Cite

[1]
Борисенко, Д.В., Присухина, И.В. and Лунёв, С.А. 2018. Machine state classification of electric track circuit by means of logistic regression. Omsk Scientific Bulletin. 4(160) (Sep. 2018), 67–72. DOI:https://doi.org/10.25206/1813-8225-2018-160-67-72.

Issue

Section

Electrical engineering. Power engineering

Similar Articles

You may also start an advanced similarity search for this article.