Optimization of the E×B method for studying the charge composition of ions in the plasma jet of Hall effect thrusters
DOI:
https://doi.org/10.25206/2588-0373-2025-9-4-100-107Keywords:
electric propulsion, Hall effect thruster, plasma diagnosis, ion charge state, Wien Filter, ion plume simulation.Abstract
Electric propulsion rocket engines are widely used on board modern spacecraft. To ensure the efficient use of such engines, it is important to diagnose the plasma plume of the engine. Measuring the parameters of the plasma plume is used for the determining its efficiency, and calculating the impact of the engine plasma plume on the onboard devices of spacecraft. One of the most important tasks is to study the charge state composition of the ions in the plasma plume of an electric propulsion.
The article presents a computational study of the method for measuring the charge composition of the plasma plume of a Hall effect thruster. The operation of probes of various geometries in plasma plume of the Hall effect thruster with discharge voltages from 100 to 2000 V, the propellant of which is xenon, is simulated. Using calculations, the features of this technique are shown, and the optimal geometry is selected for studying the fraction of two-charge ions in the Hall effect thruster.
Downloads
References
(1). Lev D., Myers R. M., Lemmer K. M. [et al.]. The technological and commercial expansion of electric propulsion. Acta Astronaut. 2019. Vol. 159. P. 213–227. DOI: 10.1016/j.actaastro.2019.03.058.
(2). Levchenko I., Xu S., Mazouffre S. [et al.]. Perspectives, frontiers, and new horizons for plasma-based space electric propulsion. Physics of Plasmas. 2020. Vol. 27. P. 020601. DOI: 10.1063/1.5109141.
(3). Колганов И. В. Обзор электрических ракетных двигателей для двигательных установок малых космических аппаратов // Омский научный вестник. Сер. Авиационно-ракетное и энергетическое машиностроение. 2025. Т. 9, № 2. С. 94–103. DOI: 10.25206/2588-0373-2025-9-2-94-103. EDN: URYXIV.
Kolganov I. V. Obzor elektricheskikh raketnykh dvigateley dlya dvigatel’nykh ustanovok malykh kosmicheskikh apparatov [Review of electric rocket engines for small spacecraft propulsion systems]. Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoye i energeticheskoye mashinostroyeniye. Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering. 2025. Vol. 9, no. 2. P. 94–103. DOI: 10.25206/2588-0373-2025-9-2-94-103. EDN: URYXIV. (In Russ.).
(4). Gorshkov O. A., Shagayda A. A. Determining the efficiency of a plasma thruster with closed electron drift. Technical Physics Letters. 2008. Vol. 34. P. 153–155. DOI: 10.1134/S106378500802020X.
(5). King L. B. Transport-property and mass spectral measurements in the plasma exhaust plume of a Hall-effect space propulsion system: Ph. D. Dissertation. University of Michigan, 1998. 262 p.
(6). Hofer R. R., Gallimore A. D. Ion species fractions in the far-field plume of a high-specific impulse Hall thruster. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2003. DOI: 10.2514/6.2003-5001.
(7). Кожевников В. В., Смирнов А. А., Смирнов П. Е., Черный И. А. Автоматизированная система диагностики параметров выходного пучка радиочастотного ионного двигателя // Труды МАИ. 2014. № 75. С. 11. EDN: SHCHMN.
Kozhevnikov V. V., Smirnov A. A., Smirnov P. E., Chernyy I. A. Avtomatizirovannaya sistema diagnostiki parametrov vykhodnogo puchka radiochastotnogo ionnogo dvigatelya [Automated diagnostic system for parameters of the output beam of a radio frequency ion engine]. Trudy MAI. 2014. No. 75. P. 11. EDN: SHCHMN. (In Russ.).
(8). Shastry R., Hofer R. R., Reid B. M., Gallimore A. D. Method for analyzing probe spectra from Hall thruster plumes. The Review of Scientific Instruments. 2009. Vol. 80. P. 063502. DOI: 10.1063/1.3152218.
(9). Моделирование потоков заряженных частиц в ионно-оптических системах ионных двигателей (IOS-3D): программа для ЭВМ / Шагайда А. А. Москва: ФИПС, 2014. № 2014612703.
Modelirovaniye potokov zaryazhennykh chastits v ionno-opticheskikh sistemakh ionnykh dvigateley (IOS-3D): programma dlya EVM [Simulation of charged particle fluxes in ion-optical systems of ion engines (IOS-3D): computer program] / Shagayda A. A. Moscow, 2014. No. 2014612703. (In Russ.).
(10). Shagayda A. A., Nikitin V., Tomilin D. A. Three-dimensional analysis of ion optics with misalignments of apertures. Vacuum. 2016. Vol. 123. P. 140–150. DOI: 10.1016/j.vacuum.2015.10.030.
(11). Shagayda A. A., Madeev S. Performance limits of ion extraction systems with non-circular apertures. The Review of Scientific Instruments. 2016. Vol. 87. P. 043301. DOI: 10.1063/1.4945565.
(12). Maystrenko D. A., Shagayda A. A., Kravchenko D. A., Tomilin D. A. [et al.]. High dynamic range retarding potential analyzer operation verification. Plasma Physics Reports. 2024. Vol. 50. P 1142–1157. DOI: 10.1134/S1063780X24601135.
(13). Abroyan I. A., Eremeev M. A., Petrov N. N. Excitation of electrons in solids by relatively slow atomic particles. Soviet Physics Uspekhi. 1967. Vol. 10. P. 332–367. DOI: 10.3367/UFNr.0092.196705e.0105.
(14). Yassir A. Experimental and theoretical characterization of a Hall thruster plume: Ph. D. Dissertation. Massachusetts Institute of Technology, 2007. 231 p.
(15). Goebel D. M., Katz I. Fundamentals of electric propulsion: Ion and Hall Thrusters. JPL Space Science and Technology Series. 2008. Vol. 493. DOI: 10.1002/9780470436448.
(16). Sang-Wook K. Experimental investigations of plasma parameters and species-dependent ion energy distribution in the plasma exhaust plume of a hall thruster: Ph. D. Dissertation. University of Michigan, 1999. 241 p.
Published
How to Cite
Issue
Section
License
Non-exclusive rights to the article are transferred to the journal in full accordance with the Creative Commons License BY-NC-SA 4.0 «Attribution-NonCommercial-ShareAlike 4.0 Worldwide License (CC BY-NC-SA 4.0»)


