Impact of the location of technological equipment on the calculation results of the digital cell tower

Authors

DOI:

https://doi.org/10.25206/1813-8225-2025-196-26-34

Keywords:

antenna-mast structures, wind load, lattice metal structures, panel antennas, digital modeling, stress-strain state, aerodynamic resistance, engineering calculation.

Abstract

Modern antenna-mast structures, used for housing wireless communication equipment, are characterized by high sensitivity to wind load effects. The geometric features, shape, and spatial arrangement of antennas significantly influence the stress-strain state of the load-bearing metal structures.

The study presents the calculation results of a digital model of a cell tower, taking into account the actual placement of antennas and various wind flow directions. The conducted numerical analysis shows that applying a limited number of wind load calculation directions, based solely on the norms of SP 20.13330.2016, does not provide the required calculation accuracy. The authors prove the necessity of an individual approach in selecting the directions of action and constructing computational models with varying structural orientations relative to the wind. The obtained results are relevant for the design and reconstruction of antenna-mast
structures, as well as for their subsequent retrofitting.

Downloads

Download data is not yet available.

Author Biography

Markina Yuliya Dmitriyevna, Nizhny Novgorod State University of Architecture and Civil Engineering, Nizhny Novgorod

Candidate of Technical Sciences, Senior Lecturer of the Theory of Structures and Technical Mechanics Department, Nizhny Novgorod State University of Architecture and Civil Engineering, Nizhny Novgorod.

References

(1). Белаш Т. А., Сафин Р. Р. Моделирование ветровой нагрузки для анализа аэродинамики опор двойного назначения с антеннами, установленными на них // Вестник НИЦ «Строительство». 2024. № 41 (2). С. 18–28. DOI: 10.37538/2224-9494-2024-2(41)-18-28. EDN: CQQMAP.

Belash T. A., Safin R. R. Modelirovaniye vetrovoy nagruzki dlya analiza aerodinamiki opor dvoynogo naznacheniya s antennami, ustanovlennymi na nikh [Wind load simulation for the analysis of the antenna dual-purpose poles aerodynamics]. Vestnik NITs «Stroitel’stvo». Bulletin of Science and Research Center of Construction. 2024. No. 41 (2). P. 18–28. DOI: 10.37538/2224-9494-2024-2(41)-18-28. EDN: CQQMAP. (In Russ.).

(2). Pavan Kumar M., Markankeya Raju P., Tirupathi Naiku G. Effect of wind speed on structural behaviour of monopole and self-supporting telecommunication towers. Asian Journal of Civil Engineering. 2017. Vol. 18, no. 6. P. 911–927.

(3). Tsavdaridis K. D., Nicolaou A., Mistry A. D., Efthymiou E. Topology optimisation of lattice telecommunication tower and performance-based design considering wind and ice loads. Structures. 2020. Vol. 27. P. 2379–2399. DOI: 10.1016/j.istruc.2020.08.010.

(4). Sabitov L. S., Mailyan L. R., Yaziev S. B. [et al.]. Stress-strain state of the “combined tower-reinforced-concrete foundation-foundation soil” system for high-rise structures. E3S Web of Conferences. 2020. Vol. 164. .02035. DOI: 10.1051/e3sconf/202016402035.

(5). Axisa R., Muscat M., Sant T., Farrugia R. N. Structural assessment of a lattice tower for a small multi-bladed wind turbine. International Journal of Energy and Environmental Engineering. 2017. Vol. 8 (4). P. 343–358. DOI: 10.1007/s40095-017-0247-6.

(6). Zhang Q., Fu X., Lai T., Ren L. Wind load identification of lattice towers using multi-source heterogeneous monitoring data // Journal of Wind Engineering and Industrial Aerodynamics. 2023. Vol. 236 (11). Article 105402. DOI: 10.1016/j.jweia.2023.105402.

(7). Hadane A., Redford J. A., Gueguin M. [et al.]. CFD wind tunnel investigation for wind loading on angle members in lattice tower structures. Journal of Wind Engineering and Industrial Aerodynamics. 2023. Vol. 236 (11). 105397. DOI: 10.1016/j.jweia.2023.105397.

(8). Liu M., Wu S., Guan W., Zhang C. [et al.]. Wind loads on square lattice towers with tubular members based on wind tunnel test and numerical simulation. Physics of Fluids. 2024. Vol. 36, no. 12. 127129. DOI: 10.1063/5.0243306.

(9). Маркина Ю. Д. Автоматизация сбора статической составляющей ветровой нагрузки на решетчатую башню // Вестник компьютерных и информационных технологий. 2025. Т. 22, № 9. C. 23–30. DOI: 10.14489/vkit.2025.09.pp.023-030. EDN: UQDTZQ.

Markina Yu. D. Avtomatizatsiya sbora staticheskoy sostavlyayushchey vetrovoy nagruzki na reshetchatuyu bashnyu [Automated collection of the static component of wind load on lattice towers]. Vestnik komp’yuternykh i informatsionnykh tekhnologiy. Herald of Computer and Information Technologies. 2025. Vol. 22, no. 9. P. 23–30. DOI: 10.14489/vkit.2025.09.pp.023-030. EDN: UQDTZQ. (In Russ.)

(10). Савицкий Г. А. Ветровая нагрузка на сооружения. Москва: Изд-во литературы по строительству, 1972. 111 с.

Savitski, G. A. Vetrovaya nagruzka na sooruzheniya [Wind loading on structures]. Moscow, 1972. 111 p. (In Russ.).

(11). Руководство по расчету зданий и сооружений на действие ветра / ЦНИИСК имени В. А. Кучеренко. Москва: Строиздат, 1978. 216 с.

Rukovodstvo po raschetu zdaniy i sooruzheniy na deystviye vetra [Guide to wind resistance analysis of buildings and structures] / TsNIISK imeni V. A. Kucherenko [CRIBS named after V. A. Kucherenko]. Moscow, 1978. 216 р. (In Russ.).

(12). Симиу Э., Сканлан. Р. Воздействия ветра на здания и сооружения / пер. с англ. Б. Е. Маслова, А. В. Швецовой; под ред. Б. Е. Маслова. Москва: Стройиздат, 1984. 360 с.

Simiu E., Scanlan R. Vozdeystviya vetra na zdaniya i sooruzheniya [Wind effects on structures] / trans. from Engl. B. E. Maslov, A. V. Shvetsovа; ed. by B. E. Maslov. Moscow, 1984. 360 p. (In Russ.).

(13). Иоскевич А. В., Савченко А. В., Егорова Е. С., Иоскевич В. В. Понижающий коэффициент ветрового давления и его учет при расчете решетчатых конструкций // Строительство уникальных зданий и сооружений. 2015. № 4 (31). С. 45–57. EDN: UISIAF.

Ioskevich A. V., Savchenko A. V., Egorova E. S., Ioskevich V. V. Ponizhayushchiy koeffitsiyent vetrovogo davleniya i ego uchet pri raschete reshetchatykh konstruktsiy [The impact of the reduction factor of wind force coefficient to lattice structures]. Stroitel’stvo unikal’nykh zdaniy i sooruzheniy. Construction of Unique Buildings and Structures. 2015. No. 4 (31). P. 45–57. EDN: UISIAF. (In Russ.).

(14). Gayatri G., Reddy B.T., Narender B. Comparative study of wind and ice loads on telecommunication towers in hilly terrain. E3S Web of Conferences. 2023. Vol. 455. 02021. DOI: 10.1051/e3sconf/202345502021.

(15). Трянина, Н. Ю., Облетов Е. Н., Самохвалов И. А. Аэродинамическое воздействие на панельные антенны базовых станций // Приволжский научный журнал. 2022. № 1 (61). С. 23–30. EDN: NGWFXK.

Tryanina, N. Yu., Obletov E. N., Samokhvalov I. A. Aerodinamicheskoye vozdeystviye na panel’nyye antenny bazovykh stantsiy [Aerodynamic impact on panel antennas of base stations]. Privolzhskiy nauchnyy zhurnal. Privolzhsky Scientific Journal. 2022. No. 1 (61). P. 23–30. EDN: NGWFXK. (In Russ.).

(16). Jia Y., Huanget J., Liual Q. [et al.]. Analysis of the influence of antenna arrangement on the wind load of telecommunication towers. Applied Sciences. 2024. Vol. 14 (6). 2538. DOI: 10.3390/app14062538.

Published

2025-11-28

How to Cite

[1]
Markina Ю.Д. 2025. Impact of the location of technological equipment on the calculation results of the digital cell tower. Omsk Scientific Bulletin. 4(196) (Nov. 2025), 26–34. DOI:https://doi.org/10.25206/1813-8225-2025-196-26-34.

Issue

Section

Mechanical Engineering