Evaluation of the expansion of the functionality of a reactor-thyristor voltage regulator with wide voltage regulation ranges

Authors

DOI:

https://doi.org/10.25206/1813-8225-2025-196-73-81

Keywords:

electrical engineering complexes and systems, thyristor switch, reactor, non-sinusoidal voltage coefficient, current sinusoidal distortion coefficient, angle control, wide range voltage regulation.

Abstract

The paper considers the effect of a reactor-thyristor voltage regulator during voltage stabilization on the sinusoidal current and voltage of electrical complexes and systems with a stepwise increase in supply voltage to +16 % and a decrease in load current to –70 % of the nominal level. This study is conducted in the Matlab environment on a simulation model of electrical complexes and systems using measuring modules to evaluate the expansion of the functionality of the proposed voltage regulator when voltage is stabilized in electrical complexes and systems with high energy performance. The study is conducted when the supply voltage is increased to +16 % in steps of +2.5 %, and when the load current is reduced to –70 % in steps of –10 % of the nominal value. The obtained research results confirm that the claimed device does not distort the sinusoidal voltage of the supply network and currents of electrical complexes and systems when regulating voltage in wide aisles and sub-ranges. The results of numerical experiments also showed that the new technical solution creates a maximum voltage distortion in the power transformer and in electricity consumers by 3.75 % when the voltage in the supply network increases by +10 % and by 1.63 % when the load current decreases by –40% of the nominal level, which does not exceed the normally permissible standards established by domestic and foreign GOST standards. The most appropriate area of application of the claimed technical solution is electrical engineering complexes and systems where it becomes necessary to maintain the voltage at a given level in the event of a positive deviation and voltage fluctuations in the supply network and negative deviations, and current fluctuations on the load in wide ranges with high efficiency. 

Downloads

Download data is not yet available.

Author Biography

Tabarov Bekhruz Dovudkhodzhaevich, Komsomolsk-on-Amur State University, Komsomolsk-on-Amur

Candidate of Technical Sciences, Associate Professor, Associate Professor of the Electric Drives and Automation of Industrial Installations Department, Komsomolsk-on-Amur State University, Komsomolsk-on-Amur.

References

(1). Булатов Ю. Н., Крюков А. В., Суслов К. В. [и др.]. Согласованное управление накопителями электроэнергии и установкой распределенной генерации с прогностическими регуляторами в системе электроснабжения с пониженным качеством электроэнергии // Известия высших учебных заведений. Проблемы энергетики. 2023. Т. 25, № 6. С. 3–13. DOI: 10.30724/1998-9903-2023-25-6-3-13. EDN: HQLXTA.

Bulatov Yu. N., Kryukov A. V., Suslov K. V. [et al.]. Soglasovannoye upravleniye nakopitelyami elektroenergii i ustanovkoy raspredelennoy generatsii s prognosticheskimi regulyatorami v sisteme elektrosnabzheniya s ponizhennym kachestvom elektroenergii [Coordinated management of electricity storages and distributed generation plant with predictive controllers in a power supply system with reduced electricity quality]. Izvestiya vysshikh uchebnykh zavedeniy. Problemy energetiki. Power Engineering: Research. Equipment, Technology. 2023. Vol. 25, no. 6. P. 3–13. DOI: 10.30724/1998-9903-2023-25-6-3-13. EDN: HQLXTA. (In Russ.).

(2). Климаш В. С., Константинов А. М. Устройство для повышения качества напряжения и энергетических показателей трансформаторных подстанций // Известия Тульского государственного университета. Технические науки. 2019. № 9. С. 570–581. EDN: LTKRSG.

Klimash V. S., Konstantinov A. M. Ustroystvo dlya povysheniya kachestva napryazheniya i energeticheskikh pokazateley transformatornykh podstantsiy [Device for increasing voltage quality and energy indicators of transformer substations]. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskiye nauki. News of the Tula State University. Technical Sciences. 2019. No. 9. P. 570–581. EDN: LTKRSG. (In Russ.).

(3). Наумов А. А. Обеспечение требуемого качества электрической энергии // Известия высших учебных заведений. Проблемы энергетики. 2020. Т. 22, № 1. С. 85–92. DOI: 10.30724/1998-9903-2020-22-1-85-92. EDN: MTRTJG.

Naumov A. A. Obespecheniye trebuyemogo kachestva elektricheskoy energii [The required quality of electrical energy provision]. Izvestiya vysshikh uchebnykh zavedeniy. Problemy energetiki. Power Engineering: Research. Equipment, Technology. 2020. Vol. 22, no. 1. P. 85–92. DOI: 10.30724/1998-9903-2020-22-1-85-92. EDN: MTRTJG. (In Russ.).

(4). Фетисов Л. В., Роженцова Н. В., Булатов О. А. Повышение качества электрической энергии в сетях низкого напряжения // Известия высших учебных заведений. Проблемы энергетики. 2018. Т. 20, № 11–12. С. 99–106. DOI: 10.30724/1998-9903-2018-20-11-12-99-106. EDN: YXRTWH.

Fetisov L. V., Rozhentsova N. V., Bulatov O. A. Povysheniye kachestva elektricheskoy energii v setyakh nizkogo napryazheniya [Improving the quality of electric power in low voltage networks]. Izvestiya vysshikh uchebnykh zavedeniy. Problemy energetiki. Power Engineering: Research, Equipment, Technology. 2018. Vol. 20, no. 11–12. P. 99–106. DOI: 10.30724/1998-9903-2018-20-11-12-99-106. EDN: YXRTWH. (In Russ.).

(5). Al-Saedi W., Lachowicz S. W., Habibi D. [et al.]. Power quality enhancement in autonomous microgrid operation using Particle Swarm Optimization. International Journal of Electrical Power & Energy Systems. 2011. Vol. 42, no. 1-6. DOI: 10.1109/ISGT-Asia.2011.6257101.

(6). Montoya F. G., Banos R., Gil C. [et al.]. Minimization of voltage deviation and power losses in power networks using Pareto optimization methods. Engineering Applications of Artificial Intelligence. 2010. Vol. 23. P. 695–703. DOI: 10.1016/j.engappai.2010.01.011.

(7). Lumbreras D., Galvez E., Collado A. [et al.]. Trends in power quality, harmonic mitigation and standards for light and heavy industries: a review. Energies. 2020. Vol. 13. P. 5792. DOI: 10.3390/en13215792.

(8). Солодухо Я. Ю. Состояние и перспективы внедрения в электропривод статических компенсаторов реактивной мощности (обобщение отечественного и зарубежного опыта). Реактивная мощность в сетях с несинусоидальными токами и статические устройства для её компенсации. Москва: Информэлектро, 1981. 89 с.

Solodukho Ya. Yu. Sostoyaniye i perspektivy vnedreniya v elektroprivod staticheskikh kompensatorov reaktivnoy moshchnosti (obobshcheniye otechestvennogo i zarubezhnogo opyta). Reaktivnaya moshchnost’ v setyakh s nesinusoidal’nymi tokami i staticheskiye ustroystva dlya eyë kompensatsii [The state and prospects of introducing static reactive power compensators into an electric drive (generalization of domestic and foreign experience). Reactive power in networks with non-sinusoidal currents and static devices for its compensation]. Moscow, 1981. 89 p. (In Russ.).

(9). Vinogradov A., Vinogradova A., Golikov I. [et al.]. Adaptive automatic voltage regulation in rural 0.38 kV electrical networks. International Journal of Emerging Electric Power Systems. 2019. Vol. 20. DOI: 10.1515/ijeeps-2018-0269.

(10). Ma J. Classification of power quality disturbances via deep learning. Journal of IETE, Technical Review. 2017. Vol. 34, no. 4. P. 408–415. DOI: 10.1080/02564602.2016.1196620.

(11). Chernyshov M., Dovgun V., Temerbaev S. Hybrid power quality conditioner for three-phase four-wire power systems. E3S Web of Conferences. 2020. Vol. 178. P. 01009. DOI: 10.1051/e3sconf/202017801009.

(12). Popescu M., Bitoleanu A., Linca M. [et al.]. Improving power quality by a four-wire shunt active power filter: a case study. Energies. 2021. Vol. 14. P. 1951. DOI: 10.3390/en14071951.13.

(13). Moursi M., Joos G., Abbey C. A secondary voltage control strategy for transmission level interconnection of wind generation. Power Electronics. 2008. P. 1178–1190. DOI: 10.1109/TPEL.2008.921195.

(14). Haque M. H. Compensation of distribution system voltage Sag by DVR and D-STATCOM. Proceedings of IEEE Porto Power Tech. 2001. Vol. 5. 5 р. DOI: 10.1109/PTC.2001.964609.

(15). Belyaev A. N., Smolovik S. V. An improvement of AC electrical energy transmission system with series compensation by implementation of controllable shunt reactors. Proceedings of IEEE Power Engineering Society PowerTech. 2003. Vol. 3. 6 р. DOI: 10.1109/PTC.2003.1304526.

(16). Табаров Б. Д. Исследование влияния нового управляемого регулятора напряжения на несинусоидальность тока и напряжения системы электроснабжения // iPolytech Journal. 2024. Т. 28, № 3. С. 475–488. DOI: 10.21285/1814-3520-2024-3-475-488. EDN: MMQUKA.

Tabarov B. D. Issledovaniye vliyaniya novogo upravlyayemogo regulyatora napryazheniya na nesinusoidal’nost’ toka i napryazheniya sistemy elektrosnabzheniya [Influence of a new controlled voltage regulator on the current and voltage non-sinusoidality of a power supply system]. iPolytech Journal. 2024. Vol. 28, no. 3. P. 475–488. DOI: 10.21285/1814-3520-2024-3-475-488. EDN: MMQUKA. (In Russ.).

(17). ГОСТ 32144–2013. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. Введ. 01–07–2014. Москва: Росстандарт, 2014. 16 с.

GOST 32144–2013. Elektricheskaya energiya. Sovmestimost’ tekhnicheskikh sredstv elektromagnitnaya. Normy kachestva elektricheskoy energii v sistemakh elektrosnabzheniya obshchego naznacheniya [Electric energy. Electromagnetic compatibility of technical equipment. Power quality limits in the public power supply systems]. 2014. 16 p. (In Russ.).

(18). ГОСТ IEC 61000-6-3–2016. Электромагнитная совместимость (ЭМС). Часть 6-3. Общие стандарты. Стандарт электромагнитной эмиссии для жилых, коммерческих и легких промышленных обстановок. Введ. 01–09–2017. Москва: Стандартинформ, 2020.15 с.

GOST IEC 61000-6-3–2016. Elektromagnitnaya sovmestimost’ (EMS). Chast’ 6-3. Obshchiye standarty. Standart elektromagnitnoy emissii dlya zhilykh, kommercheskikh i legkikh promyshlennykh obstanovok [Electromagnetic compatibility (EMC). Part 6-3. Generic standards. Emission standard for residential, commercial and light-industrial environments]. Moscow, 2020. 15 p. (In Russ.).

(19). Пат. 2829330 C1 Российская Федерация, МПК Н 02 М 5/25. Реакторно-тиристорное пускорегулирующее устройство на высокой стороне трансформаторной подстанции / Табаров Б. Д. № 2024114284; заявл. 24.05.2024; опубл. 30.10.2024. EDN: LAXNHD.

Patent No. 2829330 C1 Russian Federation, IPC Н 02 М 5/25. Reaktorno-tiristornoye puskoreguliruyushcheye ustroystvo na vysokoy storone transformatornoy podstantsii [Reactor-thyristor start-control device on high side of transformer substation] / Tabarov B. D. No. 2024114284. EDN: LAXNHD. (In Russ.).

Published

2025-11-28

How to Cite

[1]
Tabarov Б.Д. 2025. Evaluation of the expansion of the functionality of a reactor-thyristor voltage regulator with wide voltage regulation ranges. Omsk Scientific Bulletin. 4(196) (Nov. 2025), 73–81. DOI:https://doi.org/10.25206/1813-8225-2025-196-73-81.

Issue

Section

Energy and Electrical Engineering