Improvement of optimization of the drive design for laser scanners based on the analysis of characteristics of scanning devices in construction industry
DOI:
https://doi.org/10.25206/1813-8225-2025-195-85-94Keywords:
PLL, electric drive, terrestrial laser scanning, BIM technologies, angular accuracy, encoder, friction coupling, construction control.Abstract
A laser scanning is a promising method of control in construction, providing high accuracy and speed of measurements. Terrestrial laser scanning is one of the key tools within the framework of Building Information Modeling technology, enabling the acquisition of precise data regarding the size, position, and deviation of objects. The article analyzes various areas of application of terrestrial laser scanning in construction and determines priority requirements for the technical specifications of the equipment. The significant role of the drive system in ensuring high angular accuracy of scanning is emphasized. An analysis of existing laser scanning systems is conducted, focusing on the technical features of drive designs that ensure high angular precision, and the main directions for further improvement of drive systems are determined. The possibility of applying electric drive control systems based on Phase-Locked Loop technology to reduce scanning costs without reducing angular accuracy through the optimization of electric drive design is considered. It is clarified how the improvement of electric drives can facilitate the wider application of terrestrial laser scanning in construction.
Downloads
References
(1). Середович В. А., Комиссаров А. В., Комиссаров Д. В., Широкова Т. А. Наземное лазерное сканирование. Новосибирск: Изд-во СГГА, 2009. 261 с.
Seredovich V. A., Komissarov A. V., Komissarov D. V., Shirokova T. A. Nazemnoye lazernoye skanirovaniye [Terrestrial laser scanning]. Novosibirsk, 2009. 261 p. (In Russ.).
(2). Хахулина Н. Б., Нестеренко И. В. Возможности технологий лазерного сканирования для получения геопространственных данных // Модели и технологии природообустройства (региональный аспект). 2018. № 1 (6). С. 141–149. EDN: VLYHYA.
Khakhulina N. B., Nesterenko I. V. Vozmozhnosti tekhnologiy lazernogo skanirovaniya dlya polucheniya geoprostranstvennykh dannykh [Possibilities of laser scanning technologies for obtaining geophysical data]. Modeli i tekhnologii prirodoobustroystva (regional’nyy aspekt). Models and Technologies Environmental Engineering (Regional Aspect). 2018. No. 1 (6). P. 141–149. EDN: VLYHYA. (In Russ.).
(3). Вареник К. А., Вареник А. С., Храмов Д. Д., Чамеев А. С. Создание цифровой информационной модели Георгиевского собора Юрьева монастыря на основе результатов лазерного сканирования и фотограмметрии // Перспективы науки. 2023. № 4 (163). С. 80–86. EDN: AIMLVR.
Varenik K. A., Varenik A. S., Khramov D. D., Chameyev A. S. Sozdaniye tsifrovoy informatsionnoy modeli Georgiyevskogo sobora Yur’yeva monastyrya na osnove rezul’tatov lazernogo skanirovaniya i fotogrammetrii [Creation of digital models of St. George's cathedral of the Yuryev monastery using the results of laser scanning and photogrammetry]. Perspektivy nauki. Science Prospects. 2023. No. 4 (163). P. 80–86. EDN: AIMLVR. (In Russ.).
(4). Шамарина А. А. Сравнительная оценка результатов наземного лазерного сканирования с данными традиционного обследования на примере объекта историко-культурного наследия Доходный дом М. М. Барановой в г. Перми // Инновации и инвестиции. 2023. № 5. С. 537–541. EDN: ZWVZPP.
Shamarina A. A. Sravnitel’naya otsenka rezul’tatov nazemnogo lazernogo skanirovaniya s dannymi traditsionnogo obsledovaniya na primere ob”yekta istoriko-kul’turnogo naslediya Dokhodnyy dom M. M. Baranovoy v g. Permi [Comparative assessment of ground laser scanning results with traditional survey data on the example of a historical and cultural heritage object M. M. Baranova apartment house in Perm]. Innovatsii i investitsii. Innovation and Investment. 2023. No. 5. P. 537–541. EDN: ZWVZPP. (In Russ.).
(5). Шарафутдинова А. А., Брынь М. Я. Опыт применения наземного лазерного сканирования и информационного моделирования для управления инженерными данными в течение жизненного цикла промышленного объекта // Вестник СГУГиТ (Сибирского государственного университета геосистем и технологий). 2021. Т. 26, № 1. С. 57–67. DOI: 10.33764/2411-1759-2021-26-1-57-67. EDN: UONPQL.
Sharafutdinova A. A., Bryn M. Ya. Opyt primeneniya nazemnogo lazernogo skanirovaniya i informatsionnogo modelirovaniya dlya upravleniya inzhenernymi dannymi v techeniye zhiznennogo tsikla promyshlennogo ob”yekta [The experience in using laser scanning and building information modeling for engineering data management during the life cycle of an industrial object]. Vestnik SGUGiT (Sibirskogo gosudarstvennogo universiteta geosistem i tekhnologiy). Vestnik of the Siberian State University of Geosystems and Technologies (SSUGT). 2021. Vol. 26, no. 1. P. 57–67. DOI: 10.33764/2411-1759-2021-26-1-57-67. EDN: UONPQL. (In Russ.).
(6). Комиссаров А. В., Ремизов А. В. Методика использования BIM-технологий и лазерного сканирования для реконструкции и модернизации объектов // Вестник СГУГиТ (Сибирского государственного университета геосистем и технологий). 2022. Т. 27, № 2. С. 115–124. DOI: 10.33764/2411-1759-2022-27-2-115-124. EDN: NHUFEV.
Komissarov A. V., Remizov A. V. Metodika ispol’zovaniya BIM-tekhnologiy i lazernogo skanirovaniya dlya rekonstruktsii i modernizatsii ob”yektov [Application bim-technologies and laser scanning for reconstruction and modernization of objects]. Vestnik SGUGiT (Sibirskogo gosudarstvennogo universiteta geosistem i tekhnologiy). Vestnik of the Siberian State University of Geosystems and Technologies (SSUGT). 2022. Vol. 27, no. 2. P. 115–124. DOI: 10.33764/2411-1759-2022-27-2-115-124. EDN: NHUFEV. (In Russ.).
(7). Богданов А. Н., Листратов Я. А. Строительный контроль методом наземного лазерного сканирования // Известия Казанского государственного архитектурно-строительного университета. 2019. № 4 (50). С. 401–409. EDN: BRIRDS.
Bogdanov A. N., Listratov Ya. A. Stroitel’nyy kontrol’ metodom nazemnogo lazernogo skanirovaniya [Construction control by ground laser scanning]. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. News of the Kazan State University of Architecture and Engineering. 2019. No. 4 (50). P. 401–409. EDN: BRIRDS. (In Russ.).
(8). Могучев С. Б. Строительный контроль с использованием облака точек и информационной модели здания // Инженерный вестник Дона. 2022. № 6 (90). С. 580–589. EDN: AORUME.
Moguchev S. B. Stroitel’nyy kontrol’ s ispol’zovaniyem oblaka tochek i informatsionnoy modeli zdaniya [Building control using point cloud and building information model]. Inzhenernyy vestnik Dona. Engineering Journal of Don. 2022. No. 6 (90). P. 580–589. EDN: AORUME. (In Russ.).
(9). 3D laser scanning Leica. Leica Geosystems. URL: https://leica-geosystems.com/ru/products/laser-scanners/scanners (accessed: 02.03.2025).
(10).Terrestrial 3D laser scanning and imaging systems. Trimble Inc. URL: https://geospatial.trimble.com/en/products/hardware/laser-scanning (accessed: 02.03.2025).
(11). FARO Focus Laser Scanning Solution. FARO. URL: https://www.faro.com/en/Products/Hardware/Focus-Laser-Scanners (accessed: 02.03.2025).
(12). Laser Scanners TOPCON [Электронный ресурс]. Topcon Corp. URL: https://mytopcon.topconpositioning.com/na/support/products/5255 (accessed: 02.03.2025).
(13). Terrestrial 3D laser scanner Z+F. Zoller + Fröhlich GmbH. URL: https://www.zofre.de/en/laser-scanners/3d-laser-scanner (accessed: 02.03.2025).
(14). Kramer A., Ossig M., Becker R. Method of obtaining a reference correction value for an index mark of an angular encoder. US Patent 9,759,583; filed April 29th, 2015; published September 12th, 2017.
(15). Müller B., Schmitt T. L., Herbst C., Wachter H. M. Drive system in a geodetic measurement instrument. US Patent 2021/0055104; filed August 20th, 2020; published February 25th, 2021.
(16). Csencsics E., Schitter G. Design of a phase-locked-loop-based control scheme for Lissajous-trajectory scanning of fast steering mirrors. 2017 American Control Conf. (ACC). 2017. P. 1568–1573. DOI: 10.23919/ACC.2017.7963176.
(17). Csencsics E., Ito S., Schlarp J., Schitter G. System Integration and Control for 3D Scanning Laser Metrology. IEEJ Journal of Industry Applications. DOI: 10.1541/ieejjia.8.207. Vol. 8 (2). P. 207–217.
(18). Bubnov A., Daynovich A. Digital automatic control system of phase-lock motor drive. 2017 Dynamics of Systems, Mechanics and Control Processes. 2017. P. 1–5. DOI: 10.1109/Dynamics.2017.8239439
(19). Bubnov A. V., Chudinov A. N., Chetverik A. N., Shpineva V. I. Development and Investigation of a Computer Model of a Synchronous-in-phase Electric Drive. 2018 Dynamics of Systems, Mechanisms and Machines (Dynamics). 2018. P. 1–6. DOI: 10.1109/Dynamics.2018.8601446. EDN: WTXZPX.
(20). Bubnov A. V., Chetverik A. N., Chudinov A. N., Schekochikhin A. V. Development of Control Methods of Phase-locked Electric Drive with Improved Dynamic Performance. 2019 Dynamics of Systems, Mechanisms and Machines (Dynamics). 2019. P. 1–6. DOI: 10.1109/Dynamics47113.2019.8944729.
Published
How to Cite
Issue
Section
License
Non-exclusive rights to the article are transferred to the journal in full accordance with the Creative Commons License BY-NC-SA 4.0 «Attribution-NonCommercial-ShareAlike 4.0 Worldwide License (CC BY-NC-SA 4.0»)