Economic evaluation of a grid-connected photovoltaic system using PVsystem software
DOI:
https://doi.org/10.25206/1813-8225-2025-195-51-59Keywords:
LCOE method, economic evaluation of photovoltaic system, technical and economic analysis, photovoltaic system, grid connected photovoltaic system, solar potential, PVSystem software.Abstract
Among renewable energy resources, photovoltaic solar energy is the most important resource. For photovoltaic installation system, capturing the maximum solar energy is a challenge, because many factors influence the energy production of the system. Among these factors, there are: technology choice which is generally expensive, orientation of the panel, ambient temperature and weather, geographical location of the solar irradiances and the tilt angle. To carry out a good project for sizing photovoltaic system, a technical-economic study must be carefully done. Located in the heart of the Sahel, Niger is one of the sunniest countries in the world with an average daily sunshine between 5 and 7 kW•h/m2/day. Despite this enormous solar potential, the country does not sufficiently exploit this resource due to the increase in the price of raw materials which has led to an increase in the cost of installing a photovoltaic system. The objective of this work is to present a technical and economic analysis of a grid connected photovoltaic system in with a capacity of 11 MW in Niger. To do this work, PVsystem software was used for economical and financial data generation using methods like Levelized cost of electricity. During this evaluation, assumptions were made: the location of installation is free, taxes and duties during the purchase and transport of the equipment will not be considered and considering the start year of the project began in 2024 and the project lifetime is 20 years, after simulation of the results obtained: Levelized Cost of Energy is 0.0138 EUR/KW•h; Net present Value is 26 430 389 EUR; Internal rate of return is 40.92 %; Payback period is 2.8 Years; Return on investment is 606.2 %.
Downloads
References
(1). Bediar S., Harrouz A., Belatrache D. Design and simulation of solar pumping system using PVsyst, case study: TSABIT-ADRAR in Algeria. Algerian Journal of Signals and Systems. 2024. Vol. 9 (2). P. 47–56. DOI: 10.51485/ajss.v9i2.210
(2). Li G., Jin Y., Akram M. W., Chen, X. Research and current status of the solar photovoltaic water pumping system – A review. Renewable and Sustainable Energy Reviews. 2017. Vol. 79. P. 440–458. DOI: 10.1016/j.rser.2017.05.055.
(3). Sharma R., Sharma S., Tiwari S. Design optimization of solar PV water pumping system. Materials Today: Proceedings. 2020. Vol. 21 (3). P. 1673–1679. DOI: 10.1016/j.matpr.2019.11.322.
(4). Baddou Y. Solar thermal systems for domestic water heating applications in residential buildings. Efficiency and economic viability analysis of monitored plants: Master thesis in Renewable Energies and Energy Efficiency. 2017. 47 р.
(5). Halder P. K. Potential and economic feasibility of solar home systems implementation in Bangladesh. Renewable and Sustainable Energy Reviews. 2016. Vol. 65. P. 568–576. DOI: 10.1016/j.rser.2016.07.062.
(6). Milosavljević D. D., Kevkić T. S., Jovanović S. J. Review and validation of photovoltaic solar simulation tools/software based on case study. Open Physics. 2022. Vol. 20, Issue 1. P. 431–451. DOI: 10.1515/phys-2022-0042.
(7). Schmela M. Global Market Outlook for Solar Power 2024–2028. SolarPower Europe. 2024. 148 p. ISBN 9789464669169. URL: https://www.solarpowereurope.org/insights/outlooks/global-market-outlook-for-solar-power-2024-2028/detail (accessed: 12.02.2025).
(8). Akshai K. N. B., Senthil R. Economic evaluation of grid connected and standalone photovoltaic systems using PVSyst. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 912 (4). DOI: 10.1088/1757-899X/912/4/042074.
(9). Emeara M. S., AbdelGawad A. F., Ahmed E. H. Hybrid Renewable Energy System for a Sustainable House-Power-Supply. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 2021. Vol. 87 (1). P. 91–107. DOI: 10.37934/arfmts.87.1.91107.
(10). Sancar M. R., Bayram A. B. Modeling and Economic Analysis of Greenhouse Top Solar Power Plant with PVSyst Software. International Journal of Engineering and Innovative Research. 2023. Vol. 5 (1). P. 48–59. DOI: 10.47933/ijeir.1209362.
(11). Шикин В., Бандари А. Российско-индийское сотрудничество в области энергетики: торговля, совместные проекты, новые сферы: моногр. Москва: Некоммерческое партнерство «Российский совет по международным делам», 2017. 16 c.
Shikin V., Bandari A. Rossiysko-indiyskoye sotrudnichestvo v oblasti energetiki: torgovlya, sovmestnyye proyekty, novyye sfery [Russia – India energy cooperation: trade, joint projects, and new areas]. Moscow, 2017. 16 p. (In Russ.).
(12). Ibegbulam Ch., Adeyemi O. O., Fogbonjaiye O. C. Adoption of Solar PV in Developing Countries: Challenges and Opportunity. International Journal of Physical Sciences Research. 2023. DOI: 10.37745/10.37745/ijpsr.17/vol7n13657.
(13). Niger: Atténuation des risques des investissements dans les énergies renouvelables. URL: https://africaminigrids.org/wp-content/uploads/2023/12/DREI-Niger-Resultats-Complets-Mars-2023.pdf (accessed: 12.02.2025).
(14). Bortolini M., Gamberi M., Graziani A., Mora C. [et al.]. Multi-parameter analysis for the technical and economic assessment of photovoltaic systems in the main European Union countries. Energy Conversion and Management. 2013. Vol. 74. P. 117–128. DOI: 10.1016/j.enconman.2013.04.035.
(15). Elomari Y., Norouzi M., Marín-Genescà M., Fernández A. [et al.]. Integration of Solar Photovoltaic Systems into Power Networks: A Scientific Evolution Analysis. Sustainability. 2022. Vol. 14 (15). 9249. DOI: 10.3390/su14159249.
(16). Zsiborács H., Baranyai N. H., Csányi S., Vincze A. [et al.]. Economic analysis of grid-connected PV system regulations: A Hungarian case study. Electronics. 2019. Vol. 8 (2). 149. DOI: 10.3390/electronics8020149.
(17). Cristea C., Cristea M., Birou I., Tîrnovan R-A. Economic assessment of grid-connected residential solar photovoltaic systems introduced under Romania’s new regulation. Renewable Energy. 2020. DOI : 10.1016/j.renene.2020.07.130.
(18). SolarPower Europe (2022): Perspectives du marché mondial de l'énergie solaire 2022–2026. 116 p. ISBN 9789464518610.
(19). SolarPower Europe (2023): Global Market Outlook for Solar Power 2023–2027. URL: https://www.solarpowereurope.org/insights/outlooks/global-market-outlook-for-solar-power-2023-2027/detail (accessed: 12.02.2025).
(20). Косарева-Володько О. В., Алилу Сани Маман Кабиру. Проектирование и моделирование фотоэлектрических систем с помощью программного обеспечения PVsystem // Омский научный вестник. 2024. № 4 (192). С. 91–99. DOI: 10.25206/1813-8225-2024-192-91-99. EDN: CEQYVR.
Kosareva-Volodko O. V., Alilu Sani Maman Kabiru. Proyektirovaniye i modelirovaniye fotoelektricheskikh sistem s pomoshch’yu programmnogo obespecheniya PVsystem [Design and simulation of photovoltaic systems using PVsystem software]. Omskiy nauchnyy vestnik. Omsk Scientific Bulletin. 2024. No. 4 (192). P. 91–99. DOI: 10.25206/1813-8225-2024-192-91-99. EDN: CEQYVR. (In Russ.).
Published
How to Cite
Issue
Section
License
Non-exclusive rights to the article are transferred to the journal in full accordance with the Creative Commons License BY-NC-SA 4.0 «Attribution-NonCommercial-ShareAlike 4.0 Worldwide License (CC BY-NC-SA 4.0»)