Prospects for application of 3D-printing cryoresistant windings for electric machines
DOI:
https://doi.org/10.25206/1813-8225-2025-195-66-72Keywords:
cooling system, cryogenic cooling, printed winding, additive technologies, SLM printing, cryogenic electric machine, AlSi10Mg.Abstract
The article presents a review of the literature on cryogenic electric machines. The advantages and disadvantages of their development and implementation, problems associated with the use of high temperature superconductors are considered. Various approaches to cryogenic cooling of electric machines are considered, such as direct contact of the coolant with the active elements of the electric machine and cooling through the contact of the active elements of the electric machine with the refrigeration machine. A description of an experimental stand for assessing the prospects for the use of additive technologies in the design and production of windings for cryogenic electric machines and a test methodology for a printed winding made of aluminum alloy RS-300 (AlSi10Mg), manufactured by SLM printing are presented. The results of experimental studies are presented, during which the relationship between the winding temperature, current density and heat dissipation power is established. The characteristics of the printed aluminum winding are compared with a winding made of copper wire manufactured in a traditional way.
Funding: The work has supported by the Russian Science Foundation within the framework of scientific project No. 24-29-00177 “Research and improvement of cooling systems to increase the power density of electric machines”.
Downloads
References
(1). Jansen R. H., Brown G. V., Felder J. L., Duffy K. P. Turboelectric aircraft drive key performance parameters and functional requirements. Proceedings of AIAA Propulsion & Energy. Orlando, FL, USA. 2015. URL: https://ntrs.nasa.gov/citations/20160006295 (accessed: 14.02.2025).
(2). Berg F., Palmer J., Miller P., Dodds G. HTS system and component targets for a distributed aircraft propulsion system. IEEE Transactions on Applied Superconductivity. 2017. Vol. 27 (4). P. 1–7. DOI: 10.1109/TASC.2017.2652319.
(3). Ковалев Л. К., Ларионов А. Е., Модестов К. А. [и др.]. Перспективы применения криогенных электрических машин в авиации // Электричество. 2015. № 1. С. 4–13. EDN: TGTGYP.
Kovalev L. K., Larionov A. E., Modestov K. A. [et al.]. Perspektivy primeneniya kriogennykh elektricheskikh mashin v aviatsii [Prospects for using cryogenic electrical machines in aircraft engineering]. Elektrichestvo. 2015. No. 1. P. 4–13. EDN: TGTGYP. (In Russ.).
(4). Ковалев К. Л., Дежин Д. С., Иванов Н. С. Оценка перспектив увеличения удельной мощности электрических машин для БЭС и ПЭС // Вестник РГАТУ. имени П. А. Соловьева. 2015. № 4 (35). С. 9–16. EDN: VJIMVX.
Kovalev K. L., Dezhin D. S., Ivanov N. S. Otsenka perspektiv uvelicheniya udel’noy moshchnosti elektricheskikh mashin dlya BES i PES [Possible ways to increase specific power of electrical machines for electric airplanes]. Vestnik RGATU. imeni P. A. Solovyeva. 2015. No. 4 (35). P. 9–16. EDN: VJIMVX. (In Russ.).
(5). Ковалёв Л. К., Ковалёв К. Л., Колчанова И. П., Полтавец В. Н. Зарубежные и российские разработки в области создания сверхпроводниковых электрических машин и устройств // Известия Российской Академии наук. Энергетика. 2012. № 6. С. 3–26. EDN: PJCMTH.
Kovalev L. K., Kovalev K. L., Kolchanova I. P., Poltavets V. N. Zarubezhnyye i rossiyskiye razrabotki v oblasti sozdaniya sverkhprovodnikovykh elektricheskikh mashin i ustroystv [Foreign and Russian developments in the sphere of creation of superconducting electrical machines and devices]. Izvestiya Akademii nauk. Energetika. Proceedings of the Russian Academy of Sciences. Power Engineering. 2012. No. 6. P. 3–26. EDN: PJCMTH. (In Russ.).
(6). Guo Y., Majoros M., Cantemir C. G. [et al.]. Experimental study of two-phase cryogenic cooling of aluminum stator conductors using a single slot test configuration. IOP Conference Series: Materials Science and Engineering. 2024. Vol. 1301 (1). P. 012161. DOI: 10.1088/1757-899X/1301/1/012161.
(7). Biasion M., João Fernandes F. P., Branco P. J. d. C., Vaschetto S. [et al.]. A Comparison of Cryogenic-Cooled and Superconducting Electrical Machines. IEEE Energy Conversion Congress and Exposition (ECCE). 2021. P. 4045–4052. DOI: 10.1109/ECCE47101.2021.9595182.
(8). Гарипов И. Р., Ахмедзянов Д. А. Системы терморегулирования перспективных дозвуковых летательных аппаратов // Вестник Уфимского государственного авиационного технического университета. 2023. Т. 27, № 2 (100). С. 100–118. DOI: 10.54708/19926502_2023_272100100. EDN: AAGXHZ.
Garipov I. R., Akhmedzyanov D. A. Sistemy termoregulirovaniya perspektivnykh dozvukovykh letatel’nykh apparatov [Thermal management systems for advanced subsonic aircrafts]. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta. Vestnik UGATU. 2023. Vol. 27, no. 2 (100). P. 100–118. DOI: 10.54708/19926502_2023_272100100. EDN: AAGXHZ. (In Russ.).
(9). Grilli F., Pardo E., Stenvall A., Nguyen D. N. Computation of losses in HTS under the action of varying magnetic fields and currents. IEEE Transactions on Applied Superconductivity. 2014. Vol. 24 (1). P. 78–110. DOI: 10.1109/TASC.2013.2259827.
(10). Sibilli T., Senne C., Jouan H. [et al.]. Synergistic hybrid-electric liquid natural gas drone: S.H.I.E.L.D. Aircraft Engineering and Aerospace Technology. 2020. Vol. 92, no. 5. P. 757–768. DOI: 10.1108/AEAT-10-2019-0211.
(11). Çınar H., Kandemir I., Donateo T. Current Technologies and Future Trends of Hydrogen Propulsion Systems in Hybrid Small Unmanned Aerial Vehicles. Hydrogen Electrical Vehicles. Wiley & Sons Ltd, 2023. P. 75–109. ISBN 978-1-394-16638-1.
(12). Гарипов И. Р., Саяхов И. Ф., Юшкова О. А. [и др.]. Обзор систем охлаждения криогенных электрических машин // Materials. Technologies. Design. 2023. Т. 5, № 1 (11). С. 13–26. DOI: 10.54708/26587572_2023_511113. EDN: KEVOXT.
Garipov I. R., Sayakhov I. F., Yushkova O. A. [et al.]. Obzor sistem okhlazhdeniya kriogennykh elektricheskikh mashin [Overview of cooling systems for cryogenic electric machines]. Materials. Technologies. Design. 2023. Vol. 5, no. 1 (11). P. 13–26. DOI: 10.54708/26587572_2023_511113. EDN: KEVOXT. (In Russ.).
(13). Montoya R. A., Delgado S., Castilla J. [et al.]. Methods to simplify cooling of liquid helium cryostats. HardwareX. 2019. Vol. 5. DOI: 10.1016/j.ohx.2019.e00058.
(14). Karagusov V. I., Levin S. L., Svjatyj V. V., Goshlja R. Ju. Superfluid helium сryostat for sensitive elements cooling. Procedia Engineering. 2016. Vol. 152 (4). P. 439–445. DOI:10.1016/j.proeng.2016.07.615.
(15). Dyson R. W., Jansen R. H., Duffy K. P., Passe P. J. High efficiency megawatt machine rotating cryocooler conceptual design. 2019 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). 2019. P. 1–15. DOI: 10.2514/6.2019-4515.
(16). Duffy K., Passe P., Dyson R. [et al.]. High Efficiency Megawatt Motor (HEMM) Cryocooler Linear Motor – Analysis and Test. AIAA Propulsion and Energy 2020 Forum. 2020. DOI: 10.2514/6.2020-3601.
(17). Xiao J., Zhao Y., Dutta R., Haran K. Rotating Cryocooler Performance for Superconducting Rotor. 2023 IEEE Power and Energy Conference at Illinois (PECI). 2023. DOI: 10.1109/PECI57361.2023.10197681.
(18). Redmond J. H., Bott F. W. Development of cryogenic electric motors. SAE Technical Paper 640023. 1964. DOI: 10.4271/640023.
(19). Chao G., Jiabao W., Shoudao H., Yaojing F. Characteristic analysis of the cryogenic permanent magnet synchronous motor for the submerged LNG pump. 2017 20th International Conference on Electrical Machines and Systems (ICEMS). 2017. P. 1–4. DOI: 10.1109/ICEMS.2017.8056434.
(20). Chengliu Ai., Yuanfeng Hu., Haifeng W. Main losses study of cryogenic induction motor for submerged liquid natural gas pump. 2015 18th International Conference on Electrical Machines and Systems (ICEMS). 2015. P. 133–136. DOI: 10.1109/ICEMS.2015.7385014.
(21). Guechi M., Desevaux P., Baucour P. [et al.]. Spray cooling of electric motor coil windings. Journal of Computational Multiphase Flows. 2016. Vol. 8 (2). P. 95–100. DOI: 10.1177/1757482X16653895.
(22). Ping S., JinCheng F., Wei D. [et al.]. Study on Radial Oil Spray Cooling of end Windings with Hairpin Motors. DOI: 10.2139/ssrn.4718093.
(23). Ghahfarokhi P. S., Podgornovs A., Kallaste A. [et al.]. Oil Spray Cooling with Hairpin Windings in High-Performance Electric Vehicle Motors. 2021 28th International Workshop on Electric Drives: Improving Reliability of Electric Drives (IWED). 2021. 9376390. DOI: 10.1109/IWED52055.2021.9376390.
(24). Kim Y., Ki T., Kim H. [et al.]. High temperature superconducting motor cooled by on-board cryocooler. IEEE Transactions on Applied Superconductivity. 2011. Vol. 21 (3). P. 2217–2220. DOI: 10.1109/TASC.2010.2094597.
(25). Atrey M. D. Cryocoolers: Theory and applications. Springer Nature, 2020. 236 p.
Published
How to Cite
Issue
Section
License
Non-exclusive rights to the article are transferred to the journal in full accordance with the Creative Commons License BY-NC-SA 4.0 «Attribution-NonCommercial-ShareAlike 4.0 Worldwide License (CC BY-NC-SA 4.0»)