Vectors for accelerating enterprise smart-industrialisation
DOI:
https://doi.org/10.25206/2542-0488-2025-10-4-127-133Keywords:
Industry 4.0, smart industrialization, digital transformation, manufacturing, cyber-physical systems, innovation ecosystem, IT infrastructure, technological sovereigntyAbstract
The article articulates an original definition of smart industrialisation as a holistic transformation of manufacturing driven by digital technologies, data and innovation. It synthesises experience with cyberphysical systems and the Industrial Internet of Things in the creation of dynamic digital twins, which enable real-time monitoring and optimisation of production processes. The key acceleration vectors for enterprise smart industrialisation are identified as: the technological vector (deployment of Internet of Things, artificial intelligence and predictive maintenance); the organisational-managerial vector (adoption of Agile methodologies and Lean 4.0); the human-capital and educational vector (continuous training and reskilling); and the ecosystem vector (engagement in public-private partnerships and industry consortia). Major barriers are shown to include high capital expenditures, underdeveloped IT infrastructure, a shortage of qualified specialists and the absence of a unified strategy. To address these challenges, the paper proposes phased «quick-win» projects to demonstrate value, modular modernisation of IT infrastructure and the establishment of digital centres of excellence. It is demonstrated that the integrated implementation of these vectors can markedly shorten time-to-impact, enhance production agility and resilience, and bolster technological sovereignty in global markets.
Downloads
References
(1). Lavrinov D. S. Cyber-physical systems and their role in the organization of smart manufacturing. The World of Science without Borders: Proceedings of the 10th ALL-Russian Scientific and Practical Conference (with International participation) for Young Researchers. Tambov, 2023. P. 311–313. ISBN 978-5-8265-2588-3.
(2). Bashynska I., Mukhamejanuly S., Malynovska Yu. [et al.]. Assessing the outcomes of digital transformation smartization projects in industrial enterprises: a model for enabling sustainability. Sustainability. 2023. Vol. 15, no. 19. 14075. DOI: 10.3390/su151914075.
(3). Мезина Т. В. Предпосылки внедрения концепции «Индустрия 4.0» // Современная наука: актуальные проблемы теории и практики. Серия: Экономика и право. 2019. № 6. С. 44–51. EDN: TVGXJZ.
Mezina T. V. Predposylki vnedreniya kontseptsii «Industriya 4.0» [Preconditions of implementation of the Industry 4.0 concept]. Sovremennaya nauka: aktual’nyye problemy teorii i praktiki. Seriya: Ekonomika i pravo. Modern Science: Actual Problems of Theory and Practice. Series: Economics and Law. 2019. No. 6. P. 44–51. EDN: TVGXJZ. (In Russ.).
(4). Дасив А. Ф., Мадых А. А., Охтень А. А. Моделирование оценки уровня смарт-индустриализации // Экономика промышленности. 2019. № 2 (86). С. 107–125. DOI: 10.15407/econindustry2019.02.0107. EDN: BSMTOQ.
Dasiv A. F., Madykh A. A., Okhten’ A. A. Modelirovaniye otsenki urovnya smart-industrializatsii [Modelling the assessment of smart-industrialization level]. Ekonomika promyshlennosti. Economy of Industry. 2019. No. 2 (86). P. 107–125. DOI: 10.15407/econindustry2019.02.0107. EDN: BSMTOQ. (In Russ.).
(5). Smart Industrialization through Trade in the Context of Africa’s Transformation. URL: https://hdl.handle.net/10855/23821 (accessed: 05.05.2025).
(6). Грязнов С. А. Умная промышленность и умное производство // Международный журнал гуманитарных и естественных наук. 2021. № 4-2 (55). С. 199–201. DOI: 10.24412/2500-1000-2021-4-2-199-201. EDN: YXMQGE.
Gryaznov S. A. Umnaya promyshlennost’ i umnoye proizvodstvo [Smart industry and smart manufacturing]. Mezhdunarodnyy Zhurnal Gumanitarnykh i Estestvennykh Nauk. 2021. No. 4-2 (55). P. 199–201. DOI: 10.24412/2500-1000-2021-4-2-199-201. EDN: YXMQGE. (In Russ.).
(7). Susanto A. H., Simatupang T., Wasesa M. Industry 4.0 maturity models to support smart manufacturing transformation: a systematic literature review. Journal RESTI (Rekayasa Sistem dan Teknologi Informasi). 2023. Vol. 7, no. 2. Р. 334–344. DOI: 10.29207/resti.v7i2.4588.
(8). Азизова Э. М. Влияние технологических инноваций на экономику // Студенческий. 2023. № 17-5(229). С. 11–13. EDN: MILCAB.
Azizova E. M. Vliyanie tekhnologicheskikh innovatsii na ekonomiku [Research on technological innovation in the field of security]. Studencheskiy. 2023. No. 17-5(229). P. 11–13. EDN: MILCAB. (In Russ.).
(9). Мерзликина Г. С. Экономическая эффективность «умного» производства: от целевых установок к регламентации непосредственный // Вестник Астраханского государственного технического университета. Серия: Экономика. 2021. № 3. С. 17–27. DOI: 10.24143/2073-5537-2021-3-17-27. EDN: OEBWES.
Merzlikina G. S. Ekonomicheskaya effektivnost’ «umnogo» proizvodstva: ot tselevykh ustanovok k reglamentatsii neposredstvennyy [Economic efficiency of smart production: from targets to regulations]. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Ekonomika. Vestnik of Astrakhan State Technical University. Series: Economics. 2021. No. 3. P. 17–27. DOI: 10.24143/2073-5537-2021-3-17-27. EDN: OEBWES. (In Russ.).
(10). Как умнеют российские заводы и фабрики // РосБизнесКонсалтинг (РБК). URL: https://goo.su/KWy2e3 (дата обращения: 05.05.2025).
Kak umneyut rossiyskiye zavody i fabriki [How Russian factories are getting smarter]. RosBiznesKonsalting. (RBK). RosBusinessConsulting (RBC). URL: https://goo.su/KWy2e3 (accessed: 05.05.2025). (In Russ.).
(11). Transforming advanced manufacturing through Industry 4.0 // McKinsey Company. URL: https://www.mckinsey.com/capabilities/operations/our-insights/transforming-advanced-manufacturing-through-industry-4-0 (accessed: 05.05.2025).
(12). Бабкин А. В., Шкарупета Е. В., Ташенова Л. В. Методика оценки конвергентности цифровой индустриализации и индустриальной цифровизации в условиях Индустрии 4 и 5.0 // π-Economy. 2023. Vol. 16 (5). C. 91–108. DOI: 18721/JE.16507. EDN: UIQYKW.
Babkin A. V., Shkarupeta E. V., Tashenova L. V. Metodika otsenki konvergentnosti tsifrovoy industrializatsii i industrial’noy tsifrovizatsii v usloviyakh Industrii 4 i 5.0 [Methodology for assessing the convergence of digital industrialization and industrial digitalization in the conditions of Industry 4 and 5.0.]. π-Economy. 2023. Vol. 16 (5). Р. 91–108. DOI: 10.18721/JE.16507. EDN: UIQYKW. (In Russ.).
(13). Стрижакова Е. Н., Стрижаков Д. В. Цифровое развитие предприятия: диагностика и оценка // Экономика науки. 2024. Т. 10, № 2. С. 30–47. DOI: 10.22394/2410-132X-2024-10-2-30-47. EDN: EEFEUL.
Strizhakova E. N., Strizhakov D. V. Tsifrovoye razvitiye predpriyatiya: diagnostika i otsenka [Enterprise digital maturity: diagnostic and assessment techniquese]. Ekonomika nauki. Economics of Science. 2024. Vol. 10, no. 2. P. 30–47. DOI: 10.22394/2410-132X-2024-10-2-30-47. EDN: EEFEUL. (In Russ.).
(14). Fedyunina A. A., Gorodnyi N. A., Simachev Yu. V. How the adoption of Industry 4.0 technologies is related to participation in global and domestic value chains: Evidence from Russia. International Journal of Innovation Studies. 2024. Vol. 8, no. 2. P. 93–108. DOI: 10.1016/j.ijis.2024.01.002.
(15). Капустина Л. М., Кондратенко Ю. Н. К вопросу о понятии «умного предприятия» в цифровой экономике // Вопросы управления. 2020. № 4 (65). С. 33–43. DOI: 10.22394/2304-3369-2020-4-33-43. EDN: CJHWYT.
Kapustina L. M., Kondratenko Yu. N. K voprosu o ponyatii «umnogo predpriyatiya» v tsifrovoy ekonomike [On the issue of the concept of “Smart Enterprise” in the digital economy]. Voprosy upravleniya. Management Issues. 2020. No. 4 (65). P. 33–43. DOI: 10.22394/2304-3369-2020-4-33-43. EDN: CJHWYT. (In Russ.).
Published
How to Cite
License
Non-exclusive rights to the article are transferred to the journal in full accordance with the Creative Commons License BY-NC-SA 4.0 «Attribution-NonCommercial-ShareAlike 4.0 Worldwide License (CC BY-NC-SA 4.0»)


