Анализ эффективности гребных винтов различных схем на основе численного моделирования рабочих процессов

Авторы

  • Месропян Арсен Владимирович Уфимский государственный нефтяной технический университет, г. Уфа
  • Шабельник Юлия Андреевна Уфимский государственный нефтяной технический университет, г. Уфа

DOI:

https://doi.org/10.25206/2588-0373-2025-9-4-5-12

Ключевые слова:

гребные винты, петлевидные винты, тороидальные винты, численное моделирование, кривые действия, кавитация гребных винтов, перспективное судостроение.

Аннотация

В статье рассматриваются особенности рабочих процессов петлевидных гребных винтов в сравнении с классическими (традиционными) гребными винтами. Численное моделирование с использованием метода конечных элементов применяется для получения интегральных характеристик основных параметров и построения кривых действия гребных винтов для анализа эффективности работы различных типов гребных винтов на разных режимах работы. Проведено сравнение классических и петлевидных гребных винтов; сопоставительный анализ показал повышение эффективности, улучшение кавитационных характеристик петлевидных гребных винтов в широком диапазоне режимов работы.

Скачивания

Данные скачивания пока недоступны.

Биографии авторов

Месропян Арсен Владимирович, Уфимский государственный нефтяной технический университет, г. Уфа

доктор технических наук, профессор (Россия), директор Института экосистем бизнеса и креативных индустрий Уфимского государственного нефтяного технического университета (УГНТУ), г. Уфа.

Шабельник Юлия Андреевна, Уфимский государственный нефтяной технический университет, г. Уфа

младший научный сотрудник кафедры «Гидрогазодинамика трубопроводных систем и гидромашины», заместитель директора по научной работе Института экосистем бизнеса и креативных индустрий УГНТУ, г. Уфа.

Библиографические ссылки

(1). Месропян А. В., Галицына А. М., Меркулова А. П., Шабельник Ю. А. Перспективы реализации электродвижения в маломерном судостроении // Электротехнические системы и комплексы. 2023. № 2 (59). С. 49–54. DOI: 10.18503/2311-8318-2023-2(59)-49-54. EDN: JVTTQO.

Mesropyan A. V., Galitsyna A. M., Merkulova A. P., Shabelnik Yu. A. Perspektivy realizatsii elektrodvizheniya v malomernom sudostroyenii [Outlook for the implementation of electric movement in shipbuilding]. Elektrotekhnicheskiye sistemy i kompleksy. Electrotechnical Systems and Complexes. 2023. No. 2 (59). P. 49–54. DOI: 10.18503/2311-8318-2023-2(59)-49-54. EDN: JVTTQO. (In Russ.).

(2). Анализ размера и доли рынка морских силовых установок – тенденции роста и прогнозы (2024–2029 гг.). URL: https://www.mordorintelligence.com/ru/industry-reports/marine-propulsion-уngine-market (дата обращения: 18.10.2025).

Analiz razmera i doli rynka morskikh silovykh ustanovok – tendentsii rosta i prognozy (2024–2029 gg.) [Market and share analysis of the marine propulsion systems – growth trends and forecasts (2024–2029)]. URL: https://www.mordorintelligence.com/ru/industry-reports/marine-propulsion-ungine-market (accessed: 18.10.2025). (In Russ.).

(3). Месропян А. В., Шабельник Ю.А. О способах повышения эффективности водоходных движителей // Вестник Дагестанского государственного технического университета. Технические науки. 2021. № 48 (3). С. 39–51. DOI: 10.21822/2073-6185-2021-48-3-39-51. EDN: MNMWGM.

Mesropyan A. V., Shabelnik Yu.A. O sposobakh povysheniya effektivnosti vodokhodnykh dvizhiteley [On ways to improve the efficiency of water propellers]. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskiye nauki. Herald of Daghestan State Technical University. Technical Sciences. 2021. No. 48 (3). P. 39–51. DOI: 10.21822/2073-6185-2021-48-3-39-51. EDN: MNMWGM. (In Russ.).

(4). Тогуняц А. Р., Анчиков С. Л., Вишневский Л. И. Соосные гребные винты и двухступенчатые лопастные движители // Морской Вестник. 2022. № 2 (82). С. 13–18. EDN: OUQHCI.

Togunyats A. R., Anchikov S. L., Vishnevskiy L. I. Soosnyye grebnyye vinty i dvukhstupenchatyye lopastnyye dvizhiteli [Contra-rotating propellers and two-stage blade propulsors]. Morskoy Vestnik. 2022. No. 2 (82). P. 13–18. EDN: OUQHCI. (In Russ.).

(5). Афанасьев А. К., Ревенко Е. С., Ушаков К. М. Гидродинамические характеристики широколопастных гребных винтов с усеченной формой лопасти в свободной воде // Вестник государственного университета морского и речного флота имени адмирала С. О. Макарова. 2024. Т. 16, № 4. С. 519–529. DOI: 10.21821/2309-5180-2024-16-4-519-529. EDN: BSYAXC.

Afanasyev A. K., Revenko E. S., Ushakov K. M. Gidrodinamicheskiye kharakteristiki shirokolopastnykh grebnykh vintov s usechennoy formoy lopasti v svobodnoy vode [Hydrodynamic properties of propellers with large blade-area ratio and truncated blade in free water]. Vestnik Gosudarstvennogo Universiteta Morskogo i Rechnogo FLOTA imeni Admirala S. O. Makarova. 2024. Vol. 16, no. 4. P. 519–529. DOI: 10.21821/2309-5180-2024-16-4-519-529. EDN: BSYAXC. (In Russ.).

(6). Славгородская А. В., Славгородский В. М. Фантазии на тему гребных винтов с волнистыми лопастями // САПР и графика. 2015. № 1 (219). C. 69–72. EDN: TRQEOJ.

Slavgorodskaya A. V., Slavgorodskiy V. M. Fantazii na temu grebnykh vintov s volnistymi lopastyami [Fantasies about propellers with wavy blades]. SAPR i grafika. CAD and Graphics. 2015. No. 1 (219). P. 69–72. EDN: TRQEOJ. (In Russ.).

(7). Stan L. C. New innovative backflow marine propeller optimization study by CFD. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 400, Issue 8. P. 2–10.

(8). Tadros M., Ventura C. Design of propeller series optimizing fuel consumption and propeller efficiency. Journal of Marine Science and Engineering. 2021. Vol. 9, Issue 11. P. 1226. DOI: 10.3390/jmse9111226.

(9). Zheng L., Chen Sh., Chen X., Ji Sh. Reverse engineering-inspired parametric 3D geometry model of marine propeller. Polish Maritime Research. 2023. Vol. 30. P. 35–47. DOI: 10.2478/pomr-2023-0037.

(10). Месропян А.В., Шабельник Ю. А. К вопросу об эффективности рабочего процесса петлевидных гребных винтов // Омский научный вестник. Сер. Авиационно-ракетное и энергетическое машиностроение. 2023. Т. 7, № 2. С. 15–21. DOI: 10.25206/2588-0373-2023-7-2-15-21. EDN: MRPSFC.

Mesropyan A. V., Shabelnik Yu. A. K voprosu ob effektivnosti rabochego protsessa petlevidnykh grebnykh vintov [The question of the efficiency of the workflow of loop propeller]. Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoye i energeticheskoye mashinostroyeniye. Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering. 2023. Vol. 7, no. 2. P. 15–21. DOI: 10.25206/2588-0373-2023-7-2-15-21. EDN: MRPSFC. (In Russ.).

(11). Пат. 2780771 Российская Федерация, МПК В 63 Н 1/00. Петлевидный гребной винт / Месропян А. В., Шабельник Ю. А. № 2022106691; заявл. 15.03.22; опубл. 30.09.22, Бюл. № 28.

Patent. 2780771 Russian Federation, IPC В 63 Н 1/00. Petlevidnyy grebnoy vint [Loop-shaped propeller] / Mesropyan A.V., Shabelnik Yu. A. No. 2022106691. (In Russ.).

(12). Sharrow G. Ch., Cherry H. Propeller. US Patent 009926058B2; filed May 25th, 2017; published March 27th, 2018.

(13). Abbaspour R., Yadegari M., Khoshnevis A. B. [et al.]. Optimization of horizontal spacing in cylinder‑NACA0012 airfoil configuration in the Sharrow propeller using entropy generation analysis and multi‑objective genetic algorithm. Journal of Marine Science and Technology. 2025. DOI: 10.1007/s00773-025-01097-5.

(14). Bima Anugerah Putraa1, Fajri Ashfi Rayhan. Comparative Analysis of Conventional and Toroidal Propeller through CFD Methods. CFD Letters 2025. Vol. 18, Issue 2. P. 137–160.

(15). Neslin Thavamony, Anish Kumar, Joshua Selwyn. Numerical investigation on the influence of toroidal propeller on the heat transfer enhancement of an automobile radiator. Case Studies in Thermal Engineering. 2025. Vol. 73. P. 106661. DOI: 10.1016/j.csite.2025.106661.

(16). Toroidal propellers: A noise-killing game changer in air and water. URL: https://newatlas.com/aircraft/toroidal-quiet-propellers/ (accessed: 18.10.2025).

(17). Sirousi H, Negahdari M. Numerical study and hydrodynamic analysis of Sharrow propeller. Marine Engineering. 2024. Vol. 20 (44) P. 24–39. DOI: 10.61186/marineeng.20.44.3.

(18). Гребные винты уменьшенного шага для «Вихря». URL: https://www.barque.ru/shipbuilding/1974/propellers_reduced_pitch_for_whirlwind (дата обращения: 18.10.2025).

Grebnyye vinty umen’shennogo shaga dlya «Vikhrya» [Reduced pitch propellers for the Vikhr]. URL: https://www.barque.ru/shipbuilding/1974/propellers_reduced_pit•sh_for_whirlwind (accessed: 18.10.2025). (In Russ.).

(19). Carlton J. S. Marine Propellers and Propulsion. 4th Ed. 2010. 585 p. ISBN. 978-0-08-100366-4.

(20). ANSYS CFX Reference Guide. Release 2020 R2. ANSYS, Inc. July 2020.

(21). Tonello N., Eude Y., Meux B., Ferrand M. Frozen rotor and sliding mesh models applied to the 3D Simulation of the Francis-99 Tokke turbine with Code_Saturne. Journal of Physics Conference Series. 2017. Vol. 782 (1). P. 1–12. DOI: 10.1088/1742-6596/782/1/012009.

(22). Kang J. G., Kim M. C., Kim H. U., Shin I. R. Study on propulsion perfomance by varying rake distribution at the propeller tip. Journal of Marine Science and Engineering. 2019. Vol. 7 (11). 386. 12 p. DOI: 10.3390/jmse7110386.

(23). Trejo I., Terceno M., Valle J., Iranzo A., Domingo J. Analysis of a ship propeller using CFD codes. International Conference on computational methods in marine engineering. 2007. 12 p.

Загрузки


Просмотров аннотации: 8

Опубликован

26.12.2025

Как цитировать

Месропян, А. В., & Шабельник, Ю. А. (2025). Анализ эффективности гребных винтов различных схем на основе численного моделирования рабочих процессов. ОМСКИЙ НАУЧНЫЙ ВЕСТНИК. Серия «Авиационно-ракетное и энергетическое машиностроение», 9(4), 5–12. https://doi.org/10.25206/2588-0373-2025-9-4-5-12

Выпуск

Раздел

Энергетическое и химическое машиностроение