Analysis of the combined cycle indicators of the lithium bromide absorption refrigeration machine with double-stage generation (type 3) depending on the parameters of external sources
DOI:
https://doi.org/10.25206/2588-0373-2025-9-4-55-62Keywords:
actual combined thermodynamic cycle, lithium bromide absorption refrigeration machine, double-stage solution generation, energy efficiency, undersaturation of the solution in the absorber, underevaporation of the solution in the generator.Abstract
Absorption refrigeration machines that use the heat of secondary energy resources and renewable energy sources for operation have found wide application in refrigeration systems in the chemical, petrochemical, textile, metallurgy and other industries. Heat conversion in absorption refrigeration machines is accomplished using direct and reverse cycles, so three external heat sources are required to generate cold: a heating source, a source being cooled (the source of the cooled object), and a cooling source. Lithium bromide absorption refrigeration machines are used to generate cold at above-zero temperatures. Many proposed cycles for lithium bromide absorption refrigeration machines have not yet been studied.
The paper presents the results of a study of the parameters of a real combined thermodynamic cycle of lithium bromide absorption refrigeration machines with double-stage generation (type 3) depending on the temperatures of external sources. The cycle's efficiency indicators, heat exchanger loads, and the optimal degassing zone for an aqueous lithium bromide solution are determined. The efficiency indicators of the studied cycle, the loads on heat exchangers, and the optimal value of the degassing zone of an aqueous solution of lithium bromide were determined. A study was carried out to determine the influence of the values of incompleteness of solution saturation in the absorber and incompleteness of solution evaporation in the generator on the cycle efficiency.
Downloads
References
(1). Du S., Xu Z., Wang R. [et al.]. Development of direct seawater-cooled LiBr–H2O absorption chiller and its application in industrial waste heat utilization. Energy. 2024. Vol. 294 (8). P. 130816. DOI:10.1016/j.energy.2024.130816.
(2). Salilih E. M., Bamaga O., Almatrafi E. [et al.]. Performance analysis of a novel absorption-refrigeration driven membrane condenser system for recovery of water and waste heat from flue gas. International Journal of Refrigeration. 2023. Vol. 156. P. 219–231. DOI:10.1016/j.ijrefrig.2023.10.011.
(3). Yang S., Deng C., Liu Z. Optimal design and analysis of a cascade LiBr/H2O absorption refrigeration/transcritical CO2 process for low-grade waste heat recovery. Energy Conversion and Management. 2019. Vol. 192 (7). P. 232–242. DOI:10.1016/j.enconman.2019.04.045.
(4). Li B., Wang S.-S., Wang K. [et al.]. Thermo-economic analysis of a combined cooling, heating and power system based on carbon dioxide power cycle and absorption chiller for waste heat recovery of gas turbine utilization. Energy Conversion and Management. 2020. Vol. 224. P. 113372. DOI: 10.1016/j.enconman.2020.113372.
(5). Liu Z., Xie N., Yang S. Thermodynamic and parametric analysis of a coupled LiBr/H2O absorption chiller/Kalina cycle for cascade utilization of low-grade waste heat. Energy Conversion and Management. 2020. Vol. 205. P. 112370. DOI: 10.1016/j.enconman.2019.112370.
(6). Alali A. E., Al Tubeshat A., Al Khasawneh K. Performance analysis of stirling engine double-effect absorption chiller hybrid system for waste heat utilization from gas turbine modular helium reactor. Energy Conversion and Management. 2022. Vol. 251 (1). P. 114976. DOI:.10.1016/j.enconman.2021.114976.
(7). Chen Z., Ripin Z. M., Wang J. Thermodynamic and economic analysis of a phosphoric acid fuel cell combined heating cooling and power system. Energies. 2024. Vol. 17 (16). P. 4038. DOI: 10.3390/en17164038.
(8). Borri E., Tafone A., Comodi G. [et al.]. Improving liquefaction process of microgrid scale liquid air energy storage (LAES) through waste heat recovery (WHR) and absorption chiller. Energy Procedia. 2017. Vol. 143. P 699–704. DOI: 10.1016/j.egypro.2017.12.749.
(9). Ul Haq E., Taqvi S. A. A., Naqvi M. [et al.]. Multistage carbon dioxide compressor efficiency enhancement using waste heat powered absorption chillers. Energy Science & Engineering. 2021. Vol. P. 1373–1384. DOI: 10.1002/ese3.898.
(10). Shiue A., Hu S.-C., Chiang K.-H. Effect of operating variables on performance of an absorption chiller driven by heat from municipal solid waste incineration. Sustainable Energy Technologies and Assessments. 2018. Vol. 27. P. 134–140. DOI: 10.1016/j.seta.2018.04.008.
(11). Xu Z. Y., Wang R. Z. Absorption refrigeration cycles: Сategorized based on the cycle construction. International Journal of Refrigeration. 2016. Vol. 62. P. 114–136. DOI: 10.1016/j.ijrefrig.2015.10.007.
(12). Dadpour D., Deymi-Dashtebayaz M., Hoseini-Modaghegh A. [et al.]. Proposing a new method for waste heat recovery from the internal combustion engine for the double-effect direct-fired absorption chiller. Applied Thermal Engineering. 2022. Vol. 216 (2). P. 119114. DOI: 10.1016/j.applthermaleng.2022.119114.
(13). Bhowmick A., Kundu B. Exergoeconomic assessment and optimization of a double effect absorption chiller integrated with a humidification-dehumidification desalination system. Energy Conversion and Management. 2021. Vol. 247. P. 114766. DOI: 10.1016/j.enconman.2021.114766.
(14). Lizarte R., Marcos J. D. COP optimisation of a triple-effect H2O/LiBr absorption cycle under off-design conditions. Applied Thermal Engineering. 2016. Vol. 99. P. 195–305. DOI: 10.1016/j.applthermaleng.2015.12.121.
(15). Wang J., Zheng D. Performance of one and a half-effect absorption cooling cycle of H2O/LiBr system. Energy Conversion and Management. 2009. Vol. 50 (12). P. 3087–3095. DOI: 10.1016/j.enconman.2009.08.004.
(16). Ibrahim N. I., Al-Sulaiman F. A., Ani F. N. A detailed parametric study of a solar driven double-effect absorption chiller under various solar radiation data. Journal of Cleaner Production. 2020. Vol. 251. P. 119750. DOI: 10.1016/j.jclepro.2019.119750.
(17). Nikbakhti R., Wang X., Hussein A. K. [et al.]. Absorption cooling systems – Review of various techniques for energy performance enhancement. Alexandria Engineering Journal. 2020. Vol. 59 (2). P. 707–738. DOI: 10.1016/j.aej.2020.01.036.
(18). Бараненко А. В., Малинина О. С. Развитие систем холодоснабжения на базе абсорбционных бромистолитиевых холодильных машин // Вестник Международной академии холода. 2024. № 1. С. 3–12. DOI: 10.17586/1606-4313-2024-23-1-3-12. EDN: ICQZTI.
Baranenko A. V., Malinina O. S. Razvitiye sistem kholodosnabzheniya na baze absorbtsionnykh bromistolitiyevykh kholodil’nykh mashin [Refrigeration supply systems based on lithium bromide absorption refrigerating machines]. Vestnik Mezhdunarodnoy akademii kholoda. Journal of International Academy of Refrigeration. 2024. No. 1. P. 3–12. DOI: 10.17586/1606-4313-2024-23-1-3-12. EDN: ICQZTI. (In Russ.).
(19). Малинина О. С., Бараненко А. В., Аль-Фураиджи М. А. [и др.]. Эффективность абсорбционной бромистолитиевой холодильной машины с многоступенчатыми процессами абсорбции и генерации со связанным потоком массы. Омский научный вестник. Серия Авиационно-ракетное и энергетическое машиностроение. 2021. Т. 5, № 2. С. 9–17. DOI: 10.25206/2588-0373-2021-5-2-9-17. EDN: JPVVVE.
Malinina O. S., Baranenko A. V., Al’-Furaidzhi M. A. [et al.]. Effektivnost’ absorbtsionnoy bromistolitiyevoy kholodil’noy mashiny s mnogostupenchatymi protsessami absorbtsii i generatsii so svyazannym potokom massy [Efficiency of lithium bromide absorption chiller with multi-stage absorption and generation processes with associated mass flow]. Omskiy nauchnyy vestnik. Seriya Aviatsionno-raketnoye i energeticheskoye mashinostroyeniye. Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering. 2021. Vol. 5, no. 2. S. 9–17. DOI: 10.25206/2588-0373-2021-5-2-9-17. EDN: JPVVVE. (In Russ.).
(20). Бараненко А. В., Бухарин Н. Н., Пекарев В. И. [и др.]. Холодильные машины / под общ. ред. Л. С. Тимофеевского. Санкт-Петербург: Политехника, 2006. 941 с. ISBN 5-7325-0792-2.
Baranenko A. V., Bukharin N. N., Pekarev V. I. [et al.]. Kholodil’nyye mashiny [Refrigerating machines] / ed. by L. S. Timofe•yyevskiy. Saint Petersburg, 2006. 941 p. ISBN 5-7325-0792-2. (In Russ.).
(21). Бараненко А. В., Тимофеевский Л. С., Долотов А. Г. [и др.]. Абсорбционные преобразователи теплоты: моногр. Санкт-Петербург: Изд-во СПбГУНиПТ, 2005. 337 с. ISBN 5-89565-116-X.
Baranenko A. V., Timofeevskiy L. S., Dolotov A. G., Popov A. V. Absorbtsionnye preobrazovateli teploty [Absorption heat converters]. Saint Petersburg, 2005. 338 p. ISBN 5-89565-116-X. (In Russ).
Published
How to Cite
Issue
Section
License
Non-exclusive rights to the article are transferred to the journal in full accordance with the Creative Commons License BY-NC-SA 4.0 «Attribution-NonCommercial-ShareAlike 4.0 Worldwide License (CC BY-NC-SA 4.0»)


