Influence of the modulated ultrasound on the structure, mechanical and tribotechnical properties of polytetrafluoroethylene composite and multi-layered carbon nanotubes
DOI:
https://doi.org/10.25206/2588-0373-2025-9-3-114-122Keywords:
polytetrafluoroethylene, multiwalled carbon nanotubes, friction surface, abrasive wear, dry friction, ultrasound, modulation.Abstract
The article presents a comprehensive study of the structure, mechanical, and tribotechnical properties of polymer composite materials based on polytetrafluoroethylene (fluoroplastic-4) filled with multi-walled carbon nanotubes. The mechanical and tribotechnical properties are tested, and the supramolecular structure are investigated. The authors establish the patterns of changes in the complex of functional characteristics of polymer composite materials, depending on the filler concentration and the manufacturing process. A method of cold pressing with ultrasonic exposure and low-frequency amplitude modulation is proposed and implemented. The method provides intensification of the filler particles deaggregation, increasing the homogeneity of their distribution and strengthening the interfacial interaction. Moreover, the method leads to more efficient transfer of the contact load between the polymer composite material components and increase the durability of the tribosystem as a result of reducing the abrasive wear. In particular, the use of ultrasonic pressing, studied by polymer composite material at a content of 1.5 wt. % of nanotubes, the use of ultrasonic pressing provides an increase in the tensile strength by 10 %, the modulus of elasticity by 16 % and a decrease in the mass wear rate by 15 % compared to the traditional pressing technology. The results indicate the correlation of the pressing mode parameters, structure and mechanical- tribotechnical properties, which allow obtaining antifriction composites with increased strength and wear resistance.
Funding. The study was financially supported by the Ministry of Education and Science of the Russian Federation, Project No. FSGF-2024-0003.
Downloads
References
(1). Shoukat R., Khan M. I. Carbon nanotubes: a review on properties, synthesis methods and applications in micro and nanotechnology. Microsystem Technologies. 2021. Vol. 27, no. 12. P. 4183–4192. DOI: 10.1007/s00542-021-05211-6.
(2). Anzar N., Hasan R., Tyagi М., Narang J. Carbon nanotube – a review on synthesis, properties and plethora of applications in the field of biomedical science. Sensors International. 2020. Vol. 1. P. 100003. DOI: 10.1016/j.sintl.2020.100003.
(3). Томишко М. М., Демичева О. В., Алексеев А. М. [и др.]. Многослойные углеродные нанотрубки и их применение // Российский химический журнал. 2008. Т. 52, № 5. С. 39–42. EDN: JWDTRT.
Tomishko M. M., Demicheva O. V., Alekseev A. M. [et al.] Mnogosloynye uglerodnye nanotrubki i ikh primenenie [Multiwall carbon nanotubes and their applications]. Rossiyskiy Khimicheskiy Zhurnal. 2008. Vol. 52, no. 5. P. 39–42. EDN: JWDTRT. (In Russ.).
(4). Zhang X., Lu W., Zhou G., Li Q. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Advanced Materials. 2020. Vol. 32, no. 5. P. 1902028. DOI: 10.1002/adma.201902028.
(5). Gupta N., Gupta S. M., Sharma S. K. Carbon nanotubes: synthesis, properties and engineering applications. Carbon Letters. 2019. Vol. 29, no. 5. P. 419–447. DOI: 10.1007/s42823-019-00068-2.
(6). Бадамшина Э. Р., Гафурова М. П., Эстрин Я. И. Модифицирование углеродных нанотрубок и синтез полимерных композитов с их участием // Успехи химии. 2010. Т. 79, №. 11. С. 1027–1064. EDN: MVWYTB.
Badamshina E. R., Gafurova M. P., Estrin Ya. I. Modifitsirovanie uglerodnykh nanotrubok i sintez polimernykh kompozitov s ikh uchastiem [Modification of carbon nanotubes and synthesis of polymeric composites involving the nanotubes]. Uspekhi Khimii. 2010. Vol. 79, no. 11. P. 1027–1064. EDN: MVWYTB. (In Russ.).
(7). Истомин Н. П., Семенов А. П. Антифрикционные свойства композиционных материалов на основе фторполимеров. Москва: Наука, 1981. 146 с.
Istomin N. P., Semenov A. P. Antifriktsionnye svoystva kompozitsionnykh materialov na osnove ftorpolimerov [Antifriction properties of composite materials based on fluoropolymers]. Moscow, 1981. 146 p. (In Russ.).
(8). Адаменко Н. А., Больбасов Е. Н., Бузник В. В. [и др.]. Фторполимерные материалы. Томск: Изд-во НТЛ, 2017. 596 с. ISBN 978-5-89503-596-2.
Adamenko N. A., Bolbasov E. N., Buznik V. V. [et al.] Ftorpolimernye materialy [Fluoropolymer materials]. Tomsk, 2017. 596 p. ISBN 978-5-89503-596-2. (In Russ.).
(9). Alam K. I., Dorazio A., Burris D. L. Polymers tribology exposed: eliminating transfer film effects to clarify ultralow wear of PTFE. Tribology Letters. 2020. Vol. 68 (2). P. 1–13. DOI: 10.1007/s11249-020-01306-9.
(10). Conte M., Fernandez В., Igartua A. Effect of surface temperature on tribological behavior of PTFE composites. Proceedings of the Surface Effects and Contact Mechanics X. 2011. Vol. 71. P. 219–230. DOI: 10.2495/SECM110191.
(11). Сученинов П. А., Адаменко Н. А., Сергеев Д. В. Разработка и исследование композиционных материалов для уплотнений воздушных поршневых компрессоров // Известия Волгоградского государственного технического университета. 2009. № 11. С. 66–69. EDN: KYAJXX.
Sucheninov P. A., Adamenko N. A., Sergeev D. V. Razrabotka i issledovanie kompozitsionnykh materialov dlya uplotneniy vozdushnykh porshnevykh kompressorov [Development and research of composite materials for seals of air piston compressors]. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. Izvestia VSTU. 2009. No. 11. P. 66–69. EDN: KYAJXX. (In Russ.).
(12). Гракович П. Н., Шелестова В. А., Данченко С. Г., Жандаров С. Ф. [и др.]. Проблемы применения композиционных материалов «Флувис» и «Суперфлувис» в компрессоростроении // Технические газы. 2013. № 3. С. 69–72. EDN: RSRNUJ.
Grakovich P. N., Shelestova V. A., Danchenko S. G., Zhandarov S. F. [et al.]. Problemy primeneniya kompozitsionnykh materialov “Fluvis” i “Superfluvis” v kompressorostroenii [The problems of application of composite materials Fluvis and Superfluvis in the compressor engineering]. Tekhnicheskie Gazy. 2013. No. 3. P. 69–72. EDN: RSRNUJ. (In Russ.).
(13). Охлопкова А. А., Петрова П. Н., Гоголева О. В., Парникова А. Г. Разработка технологических приемов управления свойствами композитов на основе политетрафторэтилена, содержащих наномодификаторы // Вопросы материаловедения. 2013. № 1 (73). С. 136–145. EDN: PZELHH.
Okhlopkova A. A., Petrova P. N., Gogoleva O. V., Parnikova A. G. Razrabotka tekhnologicheskikh priemov upravleniya svoystvami kompozitov na osnove politetrafluoretilena, soderzhashchikh nanomodifikatory [Development of technological methods of controlling of composites’ properties based on polytetrafluoroethylene, containing nanomodifiers]. Voprosy Materialovedeniya. 2013. No. 1 (73). P. 136–145. EDN: PZELHH. (In Russ.).
(14). Панин С. В., Корниенко Л. А., Нгуен Суан Т. [и др.]. Механические и триботехнические характеристики нано- и микрокомпозитов на основе полимер-полимерной матрицы СВМПЭ-ПТФЭ // Трение и износ. 2015. № 6. С. 652–660. EDN: VINNSB.
Panin S. V., Korniyenko L. A., Nguyen Suan T. [et al.] Mekhanicheskiye i tribotekhnicheskiye kharakteristiki nano- i mikrokompozitov na osnove polimer-polimernoy matritsy SVMPE-PTFE [Mechanical and tribological characteristics of nano- and microcomposites with UHMWPE–PTFE polymer-polymer matrix]. Treniye i iznos. Journal of Friction and Wear. 2015. No. 6. P. 652–660. EDN: VINNSB. (In Russ.).
(15). Машков Ю. К., Байбарацкая М. Ю., Кургузова О. А. Влияние условий эксплуатации на износостойкость нанокомпозитов на основе политетрафторэтилена // Наука и военная безопасность. 2021. № 2 (25). С. 78–83. EDN: VSKEYS.
Mashkov Yu. K., Baybaratskaya M. Yu., Kurguzova O. A. Vliyaniye usloviy ekspluatatsii na iznosostoykost’ nanokompozitov na osnove politetraftoretilena [Influence of operating conditions on the wear resistance of nanocomposites based on polytetrafluoroethylene]. Nauka i Voyennaya Bezopasnost’. 2021. No. 2 (25). P. 78–83. EDN: VSKEYS. (In Russ.).
(16). Song J., Lei H., Zhao G. Improved mechanical and tribological properties of polytetrafluoroethylene rein-forced by carbon nanotubes. A molecular dynamics study. Computational Materials Science. 2019. Vol. 168. P. 131–136. DOI: 10.1016/j.commatsci.2019.05.058.
(17). Пат. 2546161 C2 Российская Федерация, МПК C 08 J 5/00, B 29 C 43/56, B 29 C 69/00. Способ изготовления изделий из полимерных композиционных материалов на основе политетрафторэтилена и устройство для изготовления изделий / Машков Ю. К., Кропотин О. В., Егорова В. А., Кургузова О. А. № 2013125074/05; заявл. 29.05.2013; опубл. 10.04.2015, Бюл. № 10.
Patent 2546161 C2 Russian Federation, IPC C 08 J 5/00, B 29 C 43/56, B 29 C 69/00. Sposob izgotovleniya izdeliy iz polimernykh kompozitsionnykh materialov na osnove politetraftor•etilena i ustroystvo dlya izgotovleniya izdeliy [Method to manufacture items from polymer composite materials based on polytetrafluorethylene and device for manufacturing of items] / Mashkov Yu. K., Kropotin O. V., Egorova V. A., Kurguzova O. A. No. 2013125074/05. (In Russ.).
(18). Kornopoltsev N. V., Rogov V. E., Lenskaya E. V., Kornopoltsev V. N. Development of materials and coatings based on polytetrafluoroethylene. Chemistry for Sustainable Development. 2004. Vol. 12, no. 6. P. 681–686. EDN: HRUUJL.
(19). Негров Д. А., Путинцев В. Ю., Глотов А. И. Влияние усовершенствованной технологии прессования на структурообразование политетрафторэтилена // Ползуновский вестник. 2024. № 1. С. 240–244. DOI: 10.25712/ASTU.2072-8921.2024.01.031. EDN: JCAATM.
Negrov D. A., Putintsev V. Yu., Glotov A. I. Vliyaniye usovershenstvovannoy tekhnologii pressovaniya na strukturoobrazovaniye politetraftor•etilena [Impact of improved technologypressing on structure formation polytetrafluoroethylene]. Polzunovskiy Vestnik. 2024. No. 1. P. 240–244. DOI: 10.25712/ASTU.2072-8921.2024.01.031. EDN: JCAATM. (In Russ.).
(20). Qu H., Wen Z., Qu J., Song B. Study on effects of ultrasonic vibration on sliding friction properties of PTFE composites phosphor bronze under vacuum. Vacuum. 2019. Vol. 164. P. 1–6. DOI: 10.1016/j.vacuum.2019.02.022.
(21). Негров Д. А., Путинцев В. Ю. Влияние низкочастотной модуляции на механические свойства и триботехнические характеристики полимерных композиционных материалов // Ползуновский вестник. 2021. № 4. С. 140–145. DOI: 10.25712/ASTU.2072-8921.2021.04.018. EDN: TOAMEW.
Negrov D. A., Putintsev V. Yu. Vliyaniye nizkochastotnoy modulyatsii na mekhanicheskiye svoystva i tribotekhnicheskiye kharakteristiki polimernykh kompozitsionnykh materialov [Influence of low-frequency modulationon mechanical properties and tribotechnical characteristics of polymer composite materials]. Polzunovskiy Vestnik. 2021. No. 4. P. 140–145. DOI: 10.25712/ASTU.2072-8921.2021.04.018. EDN: TOAMEW. (In Russ.).
(22). Katiyar J. K., Sinha S. K., Kumar A. Effects of carbon fillers on the tribological and mechanical properties of an epoxy-based polymer (SU-8). Tribology-Materials, Surfaces & Interfaces. 2016. Vol. 10, no. 1. P. 33–44. DOI: 10.1080/17515831.2015.1126689.
(23). Makowiec M. E., Blanchet T. A. Improved wear resistance of nanotube-and other carbon-filled PTFE composites. Wear. 2017. Vol. 374, no. 6. P. 77–85. DOI: 10.1016/j.wear.2016.12.027.
Published
How to Cite
Issue
Section
License
Non-exclusive rights to the article are transferred to the journal in full accordance with the Creative Commons License BY-NC-SA 4.0 «Attribution-NonCommercial-ShareAlike 4.0 Worldwide License (CC BY-NC-SA 4.0»)


