Study of the technological operating regimes of condensate pipelines utilizing hydraulic diodes

Authors

  • Ovsyannikov Andrey Yuryevich LLC “Gazprom Dobycha Noyabrsk”, Noyabrsk
  • Dorofeev Egor Alekseevich Omsk State Technical University, Omsk
  • Dubrovskiy Evgeniy Nikolayevich LLC “Gazprom Dobycha Noyabrsk”, Noyabrsk

DOI:

https://doi.org/10.25206/2588-0373-2025-9-4-71-79

Keywords:

gas condensate field, oil product flow, condensate pipeline, shut-off and control equipment, flow irregularity, hydraulic diode.

Abstract

The article examines the main causes of reduced reliability of shut-off and control equipment in condensate pipelines, which are associated with uneven flow of petroleum products transported under various operating conditions of the process equipment. The study focuses on a condensate pipeline used for transporting unstable gas condensate from the primary separation plant to the processing unit, both located at gas condensate field facilities. The subject of the study is an in-line diode element, which is proposed for
integration into the condensate pipeline to reduce both pressure drop and shock loads on the shut-off and control equipment. The feasibility of using an in-line diode element is analyzed using numerical modeling of petroleum product flow by a modern software package. The obtained results are of practical value to engineering and technical specialists at gas transportation companies, pipeline system designers, and equipment developers for the oil and gas industry.

Downloads

Download data is not yet available.

Author Biographies

Ovsyannikov Andrey Yuryevich, LLC “Gazprom Dobycha Noyabrsk”, Noyabrsk

Candidate of Technical Sciences, Leading Process Engineer, East Siberian Oil and Gas Production Directorate of LLC “Gazprom Dobycha Noyabrsk”, Noyabrsk.

Dorofeev Egor Alekseevich, Omsk State Technical University, Omsk

Candidate of Technical Sciences, Associate Professor of the Hydromechanics and Transport Machines Department, Omsk State Technical University, Omsk.

Dubrovskiy Evgeniy Nikolayevich, LLC “Gazprom Dobycha Noyabrsk”, Noyabrsk

Leading Process Engineer, Chayandinskoye Oil and Gas Production Directorate of LLC “Gazprom Dobycha Noyabrsk”, Noyabrsk.

References

(1). Манихин О. Ю., Шалай В. В., Ходорева Е. В. Выбор способа подготовки природного газа для транспортировки по магистральным газопроводам // Омский научный вестник. Сер. Авиационно-ракетное и энергетическое машиностроение. 2022. Т. 6, № 3. С. 58–65. DOI: 10.25206/2588-0373-2022-6-3-58-65. EDN: ERRLJO.

Manikhin O. Yu., Shalay V. V., Khodoreva E. V. Vybor sposoba podgotovki prirodnogo gaza dlya transportirovki po magistral’nym gazoprovodam [Selection the method of natural gas preparation for transportation through main gas pipelines]. Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoye i energeticheskoye mashinostroyeniye. Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering. 2022. Vol. 6, no. 3. P. 58–65. DOI: 10.25206/2588-0373-2022-6-3-58-65. EDN: ERRLJO. (In Russ.).

(2). Кубанов А. Н., Воронцов М. А., Федулов Д. М., Глазунов В. Ю. Технологический анализ работы турбохолодильной техники на начальном этапе эксплуатации УКПГ-2 Бованенковского НГКМ // Вести газовой науки. 2013. № 4 (15). С. 84–89. EDN: RTEYZZ.

Kubanov A. N., Vorontsov M. A., Fedulov D. M., Glazunov V. Yu. Tekhnologicheskiy analiz raboty turbokholodil’noy tekhniki na nachal’nom etape ekspluatatsii UKPG-2 Bovanenkovskogo NGKM [Technological analysis of turbo-refrigeration equipment operation at the initial stage of UKPG-2 of the Bovanenkovo oil, gas, and condensate field]. Vesti Gazovoy Nauki. 2013. No. 4 (15). P. 84–89. EDN: RTEYZZ. (In Russ.).

(3). СТО Газпром 089–2010. Газ горючий природный, поставляемый и транспортируемый по магистральным газопроводам. Технические условия. Введ. 08–08–2011. Москва: OАO Газпром, 2010. 12 с.

STO Gazprom 089–2010. Gaz goryuchiy prirodnyy, postavlyayemyy i transportiruyemyy po magistral’nym gazoprovodam. Tekhnicheskiye usloviya [Combustible natural gas supplied and transported through main gas pipelines. Technical specifications]. Moscow, 2010. 15 p. (In Russ.).

(4). Пат. 86691 Российская Федерация, МПК F16K 5/20. Шаровый кран // Дмитриев А. И., Закота А. И., Карпов С. И. [и др.]. № 2009119568/22; заявл. 26.05.2009; опубл. 10.09.2009, Бюл. № 25.

Patent No. 86691 Russian Federation, IPC F16K 5/20. Sharovyy kran [Ball Valve] // Dmitriyev A. I., Zakota A. I., Karpov S. I. [et al.]. No. 2009119568/22. (In Russ.).

(5). Пат. 56535 Российская Федерация, МПК F16K 5/16. Шаровой кран // Тихонков А. С., Швецов В. Б., Тихонков А. А. № 2006107155/22; заявл. 10.03.2006; опубл. 10.09.2006, Бюл. №. 25.

Patent No. 56535 Russian Federation, IPC F16K 5/16. Sharovyy kran [Ball valve] // Tikhonkov A. S., Shvetsov V. B., Tikhonkov A. A. No. 2006107155/22. (In Russ.).

(6). Пат. 2799157 Российская Федерация, МПК F16K 5/20. Шаровой кран – регулятор давления // Бумажнов Д. В., Дворянкин С. А., Бормашев Е. А. № 2023109103; заявл. 11.04.2023; опубл. 04.07.2023, Бюл. № 19.

Patent No. 2799157 Russian Federation, IPC F16K 5/20. Sharovoy kran – regulyator davleniya [Ball valve pressure regulator] // Bumazhnov D. V., Dvoryankin S. A., Bormashev E. A. No. 2023109103. (In Russ.).

(7). Иголкин А. А. Снижение шума и виброакустических нагрузок трубопроводных систем газораспределительных станций // Journal of Dynamics and Vibroacoustics. 2014. № 1. С. 28–33. EDN: XKQSVB.

Igolkin A. A. Snizhenie shuma i vibroakusticheskih nagruzok truboprovodnyh sistem gazoraspredelitel'nyh stancij [Reduction of noise and vibroacoustic loads of pipeline systems of gas distribution stations]. Journal of Dynamics and Vibroacoustics. 2014. Vol. 1. P. 28–33. EDN: OUNXDZ. (In Russ.).

(8). Letham D. L. Fluidic system design. Mashing Design. 1966. Vol. 18. P. 210–218.

(9). Кайгородов С. Ю. Разработка конструкции и исследование рабочих процессов диафрагменного диода, предназначенного для работы в прямозубом роторном насосе: автореф. дис. … канд. наук. Омск, 2022. 24 с.

Kaigorodov S. Yu. Razrabotka konstruktsii i issledovaniye rabochikh protsessov diafragmennogo dioda, prednaznachennogo dlya raboty v pryamozubom rotornom nasose [Development of a design and study of the operating processes of a diaphragm diode intended for operation in a spur rotary pump]. Omsk, 2022. 24 p. (In Russ.).

(10). Гимадиев А. Г., Уткин А. В. Исследование характеристик вихревого гидравлического дросселя для систем подготовки проб теплоносителя // Вестник Самарского университета. Аэрокосмическая техника, технологии и машиностроение. 2015. T. 14, № 4. C. 110–117. DOI: 10.18287/2412-7329-2015-14-4-110-117. EDN: VHRWEN.

Gimadiyev A. G., Utkin A. V. Issledovaniye kharakteristik vikhrevogo gidravlicheskogo drosselya dlya sistem podgotovki prob teplonositelya. Vestnik Samarskogo universiteta [Study of characteristics of the vortex throttling valve for the sysytem of water sample conditioning]. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroyeniye. Vestnik of Samara University. Aerospace and Mechanical Engineering. 2015. Vol. 14, no. 4. P. 110–117. DOI: 10.18287/2412-7329-2015-14-4-110-117. EDN: VHRWEN. (In Russ.).

(11). Кайгородов С. Ю. Модель рабочего процесса механизма подъёма и опускания стрелы с дополнительным демпфером в виде гидродиода // Омский научный вестник. Сер. Авиационно-ракетное и энергетическое машиностроение. 2023. Т. 7, № 2. С. 52–57. DOI: 10.25206/2588-0373-2023-7-2-52-57. EDN: MHMTWN.

Kaigorodov S. Yu. Model’ rabochego protsessa mekhanizma pod”yema i opuskaniya strely s dopolnitel’nym dempferom v vide gidrodioda [The model of working process of the boom lifting and lowering mechanism with an additional damper in the form of hydrodiode]. Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoye i energeticheskoye mashinostroyeniye. Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering. 2023. Vol. 7, no. 2. P. 52–57. DOI: 10.25206/2588-0373-2023-7-2-52-57. EDN: MHMTWN. (In Russ.).

(12). Khabarova D. F., Podzerko A. V., Spiridonov E. K. Experimental Investigation of Fluidic Diodes. International Conference on Industrial Engineering, ICIE 2017. Procedia Engineering. 2017. Vol. 206. P. 93–98. DOI: 10.1016/j.proeng.2017.10.443. EDN: XNQTRX.

(13). Федорова Н. Н., Вальгер С. А., Данилов М. Н., Захарова Ю. В. Основы работы в ANSYS 17. Москва: ДМК Пресс, 2017. 210 с. ISBN 978-5-97060-425-0.

Fedorova N. N., Val’ger S. A., Danilov M. N., Zakharova Yu. V. Osnovy raboty v ANSYS 17 [Basic principles of ANSYS 17]. Moscow, 2017. 210 p. ISBN 978-5-97060-425-0. (In Russ.).

(14). Matsson J. E. An introduction to ANSYS Fluent 2021. SDC Publications, 2021. 552 p. ISBN: 978-1-63057-462-8.

(15). Ansys fluent tutorial guide. Southpointe, 2011URL: https://www.sylvain-serra.fr/res/fluent_tuto.pdf (accessed: 20.11.2025).

(16). Shcherba V., Kaigorodov S., Dorofeev E. Development and research of diaphragm hydrolic diode for positive displacement pumps. Mechanics Based Design of Structures and Machines. Vol. 53. P. 1–20. DOI: 10.1080/15397734.2024.2374452. (In Russ.).

Published

2025-12-26

How to Cite

Ovsyannikov А. Ю., Dorofeev Е. А., & Dubrovskiy Е. Н. (2025). Study of the technological operating regimes of condensate pipelines utilizing hydraulic diodes. Omsk Scientific Bulletin. Series «Aviation-Rocket and Power Engineering», 9(4), 71–79. https://doi.org/10.25206/2588-0373-2025-9-4-71-79

Issue

Section

Power and chemical engineering