Strength examination of high-speed industrial centrifugal compressor impellers, manufactured by vacuum brazing method

Authors

  • Kazantsev Anton Aleksandrovich JSC “Engineering and Manufacturing Solutions”, Saint Petersburg, Kronshtadt https://orcid.org/0000-0002-8765-0895
  • Malakhov Dmitriy Romanovich JSC “Engineering and Manufacturing Solutions”, Saint Petersburg, Kronstadt
  • Makhonin Artem Vadimovich JSC “Engineering and Manufacturing Solutions”, Saint Petersburg, Kronstadt https://orcid.org/0009-0008-5887-4823
  • Ryabov Filipp Sergeyevich JSC “Engineering and Manufacturing Solutions”, Saint Petersburg, Kronstadt
  • Solovyev Mikhail Vladimirovich SC “Engineering and Manufacturing Solutions”, Saint Petersburg, Kronstadt
  • Tselmer Mark Leonidovich JSC “Engineering and Manufacturing Solutions”, Saint Petersburg, Kronstadt https://orcid.org/0009-0006-7789-3224

DOI:

https://doi.org/10.25206/2588-0373-2025-9-4-46-54

Keywords:

centrifugal compressor, impeller, vacuum brazing, strength calculations, finite element analysis, gas-dynamic characteristics.

Abstract

The paper presents the results of a comprehensive study on the reverse engineering process of a highspeed centrifugal compressor impeller ICK KCK-01-100-1-8-А, pecial attention is paid to the complexity of reproducing a part, including the selection of a material with a significant difference in state standards and the choice of a substitute material, the selection of solder for vacuum soldering, and the technological aspects of vacuum soldering.

A simulation of gas dynamic characteristics is carried out — the pressure ratio and the temperature difference, the results of which showed satisfactory results. The stress-strain state is estimated. The simulation is performed in accordance with the requirements of API 617 and INTI S.60.2–2023 standards, taking into account the MCS and TRIP speeds of the impeller. Based on the calculation results, the diagrams of the stress-strain state and the diagrams of the plastic deformation of the rotor are given. At the end of the project, the impeller is manufactured and bench acceleration tests are carried out, according to the results of which size control is performed and deformations are evaluated using flaw detection methods.

It is shown that successful restoration of the impeller requires a deep understanding of many nuances. The results obtained confirm that the use of domestic analogues of materials, as well as modern methods of analysis, makes it possible to create an impeller with characteristics close to the best examples of modern technology.

Downloads

Download data is not yet available.

Author Biographies

Kazantsev Anton Aleksandrovich, JSC “Engineering and Manufacturing Solutions”, Saint Petersburg, Kronshtadt

Candidate of Technical Sciences, Associate Professor, Head of the Department, JSC “Engineering and Manufacturing Solutions”, Saint Petersburg, Kronshtadt.

Malakhov Dmitriy Romanovich, JSC “Engineering and Manufacturing Solutions”, Saint Petersburg, Kronstadt

Design Engineer, JSC “Engineering and Manufacturing Solutions”, Saint Petersburg, Kronstadt.

Makhonin Artem Vadimovich, JSC “Engineering and Manufacturing Solutions”, Saint Petersburg, Kronstadt

Design Engineer, JSC “Engineering and Manufacturing Solutions”, Saint Petersburg, Kronstadt.

Ryabov Filipp Sergeyevich, JSC “Engineering and Manufacturing Solutions”, Saint Petersburg, Kronstadt

Head of the Department, JSC “Engineering and Manufacturing Solutions”, Saint Petersburg, Kronstadt.

Solovyev Mikhail Vladimirovich, SC “Engineering and Manufacturing Solutions”, Saint Petersburg, Kronstadt

Head of the Center – Chief Designer, JSC “Engineering and Manufacturing Solutions”, Saint Petersburg, Kronstadt.

Tselmer Mark Leonidovich, JSC “Engineering and Manufacturing Solutions”, Saint Petersburg, Kronstadt

Head of the Department – Chief Designer, JSC “Engineering and Manufacturing Solutions”, Saint Petersburg, Kronstadt.

References

(1). Хисамеев И. Г., Максимов В. А., Баткис Г. С., Гузельбаев Я. З. Проектирование и эксплуатация промышленных центробежных компрессоров. Казань: ФЭН, 2010. 671 с.

Khisameyev I. G., Maksimov V. A., Batkis G. S., Guzel’bayev Ya. Z. Proyektirovaniye i ekspluatatsiya promyshlennykh tsentrobezhnykh kompressorov [Design and operation of industrial centrifugal compressors]. Kazan, 2010. 671 p. (In Russ.).

(2). СТО ИНТИ S.60.2–2023. Центробежные компрессорные установки для нефтепереработки и нефтехимии. Общие технические условия. Санкт-Петербург, 2023. 241 с.

STO INTI S.60.2–2023. Tsentrobezhnyye kompressornyye ustanovki dlya neftepererabotki i neftekhimii. Obshchiye tekhnicheskiye usloviya [Centrifugal compressor units for oil refining and petrochemistry. General specifications]. Saint Petersburg, 2023. 241 p. (In Russ.).

(3). ГОСТ 25054–81. Поковки из коррозионно-стойких сталей и сплавов. Общие технические условия. Введ. 01–01–1983. Москва: Изд-во стандартов, 1981. 12 с.

GOST 25054–81. Pokovki iz korrozionno-stoykikh staley i splavov. Obshchiye tekhnicheskiye usloviya [Forgings of corrosion-resistant steels and alloys. General specifications]. Moscow, 1981. 12 p. (In Russ.).

(4). Галиахметов И. Г. Конструкционные материалы центробежных и винтовых компрессоров. Выбор и технология их применения. Казань: ФЭН, 2009. 155 с. ISBN 978-5-9690-0069-8.

Galiakhmetov I. G. Konstruktsionnyye materialy tsentrobezhnykh i vintovykh kompressorov. Vybor i tekhnologiya ikh primeneniya [Structural materials of centrifugal and screw compressors. Selection and technology of their application]. Kazan, 2009. 155 p. ISBN 978-5-9690-0069-8. (In Russ.).

(5). Максименко И. А. Высокотемпературная вакуумная пайка центробежных рабочих колёс из титановых сплавов: отработка технологии и расчётно-экспериментальные исследования прочности соединений // Труды XIX Междунар. науч.-практ. конф. по компрессоростроению, посвященной 100-летию со дня рождения Владимира Борисовича Шнеппа / под общ. ред. Е. Р. Ибрагимова. Казань: Визард, 2024. С. 291–300. ISBN 978-5-6048101-3-2. EDN: WZCHKO.

Maksimenko I. A. Vysokotemperaturnaya vakuumnaya payka tsentrobezhnykh rabochikh koles iz titanovykh splavov: otrabotka tekhnologii i raschëtno-eksperimental’nyye issledovaniya prochnosti soyedineniy [High-temperature vacuum soldering of centrifugal impellers made of titanium alloys: technology development and computational and experimental studies of joint strength]. Trudy XIX Mezhdunar. nauch.-prakt. konf. po kompressorostroyeniyu, posvyashchennoy 100-letiyu so dnya rozhdeniya Vladimira Borisovicha Shneppa. Proceedings of the XIX International Scientific and Practical Conference on Compressor Engineering, dedicated to the 100th Anniversary of the birth of Vladimir Borisovich Schnepp / ed. by E. R. Ibragimov. Kazan, 2024. P. 291–300. ISBN 978-5-6048101-3-2. EDN: WZCHKO. (In Russ.).

(6). Справочник по пайке / под ред. И. Е. Петрунина. 3-е. изд., перераб. и доп. Москва: Машиностроение, 2003. 480 с.

Spravochnik po payke [Haandbook on soldering] / ed. by I. E. Petrunin. 3rd. ed., revised and suppl. Moscow, 2003. 480 p. (In Russ.).

(7). Махонин А. В., Соловьев М. В., Рябов Ф. С., Цельмер М. Л. Сравнение методов расчета и выбора прессовых посадок рабочих колес на вал для современных технологических высокооборотистых центробежных компрессоров // Потребители – производители компрессоров и компрессорного оборудования: сб. тр. междунар. симп. Санкт-Петербург: Политех-Пресс, 2025. С. 12–28. EDN: BEFBKK.

Makhonin A. V., Solov’yev M. V., Ryabov F. S., Tsel’mer M. L. Sravneniye metodov rascheta i vybora pressovykh posadok rabochikh koles na val dlya sovremennykh tekhnologicheskikh vysokooborotistykh tsentrobezhnykh kompressorov [Comparison of methods of calculation and selection of press fits of impellers on the shaft for modern technological high-speed centrifugal compressors]. Potrebiteli – proizvoditeli kompressorov i kompressornogo oborudovaniya. Consumers – Manufacturers of Compressors and Compressor Equipment. Saint Petersburg, 2025. P. 12–28. EDN: BEFBKK. (In Russ.).

(8). Егоров О. В., Махонин А. В., Сиверский А. С., Соловьев М. В., Цельмер М. Л. Создание линейки отечественных процессных компрессоров нефтеперерабатывающих заводов на основе опыта иностранных лидеров рынка // Компрессорные технологии. 2024. № 8. C. 28–32.

Egorov O. V., Makhonin A. V., Siverskiy A. S., Solov’yev M. V., Tsel’mer M. L. Sozdaniye lineyki otechestvennykh protsessnykh kompressorov neftepererabatyvayushchikh zavodov na osnove opyta inostrannykh liderov rynka [Creation of a line of domestic process compressors for oil refineries based on the experience of foreign market leaders]. Kompressornyye Tekhnologii. 2024. No. 8. P. 28–32. (In Russ.).

(9). Rekstin A. F., Soldatova K. V., Galerkin Yu. B. Experience of application the computer program based on a simplified mathematical model for industrial centrifugal compressors candidates. IOP Conference Series Materials Science and Engineering. 2019. Vol. 604. P. 012045. DOI: 10.1088/1757-899X/604/1/012045.

(10). Rekstin А., Popova E., Ucehovscy A. Centrifugal compressor stages efficiency analysis by means of the approximate algebraic equations. AIP Conference Proceedings. 2018. Vol. 2007. P. 030036. DOI: 10.1063/1.5051897.

(11). Marenina L., Galerkin Yu., Drozdov A. Stator elements optimization of centrifugal compressor intermediate type stage by CFD methods. E3S Web of Conferences. 2020. Vol. 178. P. 01020. DOI: 10.1051/e3sconf/202017801020.

(12). Matas R., Syka T., Lunacek O. Numerical and experimental modelling of the centrifugal compressor stage – setting the model of impellers with 2D blades. EPJ Web of Conferences. 2017. Vol. 143. P. 02073. DOI: 10.1051/epjconf/201714302073.

(13). Matas R., Syka T., Hurda L. Experimental investigation and numerical modelling of 3D radial compressor stage and influence of the technological holes on the working characteristics. EPJ Web of Conferences. 2018. Vol. 180. P. 02060. DOI: 10.1051/epjconf/201818002060.

(14). Syka T., Matas R., Luňáček O. Numerical and experimental modelling of the radial compressor stage. AIP Conference Proceedings. 2016. Vol. 1745. P. 020059. DOI: 10.1063/1.4953753.

(15). API Standard 617 Axial and Centrifugal Compressors and Expander-compressors. 9th ed. Washington: API Publishing Services, 2022. 214 p.

(16). Махонин А. В., Маренина Л. Н., Семеновский В. Б., Максименко И. А. Расчет ступени центробежного компрессора с кольцевой сборной камерой методами вычислительной газодинамики // Компрессорная техника и пневматика. 2023. № 2. C. 11–18. EDN: ZNJUDX.

Makhonin A. V., Marenina L. N., Semenovskiy V. B., Maksimenko I. A. Raschet stupeni tsentrobezhnogo kompressora s kol’tsevoy sbornoy kameroy metodami vychislitel’noy gazodinamiki [Alculation of the centrifugal compressor stage with an annular chamber by computational gas dynamics methods]. Kompressornaya tekhnika i pnevmatika. Compressors and Pneumatics. 2023. No. 2. P. 11–18. EDN: ZNJUDX. (In Russ.).

(17). ГОСТ 18442–80. Контроль неразрушающий. Капиллярные методы. Общие требования. Введ. 01–07–1981. Москва: Стандартинформ, 2005. 33 с.

GOST 18442–80. Kontrol’ nerazrushayushchiy. Kapillyarnyye metody. Obshchiye trebovaniya [Nondestructive testing. Capilary methods. General requirements]. Moscow, 2005. 33 p. (In Russ.).

Published

2025-12-26

How to Cite

Kazantsev А. А., Malakhov Д. Р., Makhonin А. В., Ryabov Ф. С., Solovyev М. В., & Tselmer М. Л. (2025). Strength examination of high-speed industrial centrifugal compressor impellers, manufactured by vacuum brazing method. Omsk Scientific Bulletin. Series «Aviation-Rocket and Power Engineering», 9(4), 46–54. https://doi.org/10.25206/2588-0373-2025-9-4-46-54

Issue

Section

Power and chemical engineering