Features of the thermosphere for the aerodynamic analysis of ultralow orbits

Authors

DOI:

https://doi.org/10.25206/2588-0373-2025-9-4-88-99

Keywords:

low Earth orbit, propulsion system, low orbit spacecraft, free molecular flow, energy accommodation of gas particles on the surface, aerodynamics, atmospheric models.

Abstract

The article examines the physical conditions of the thermosphere in the field of very low orbits, analyzes the features of free molecular flow around spacecraft. Special attention is paid to models of the interaction of a molecular stream with the surface of a spacecraft, including issues of energy and momentum accommodation. An analysis of the physical parameters of the thermosphere in very low Earth orbit is presented, including the distribution of density, temperature, and chemical composition, as well as their dependence on solar and geomagnetic activity. The theoretical foundations of the free molecular flow regime are analyzed, where the equations of particle motion and the conditions of reflection from the surface are considered. Methods of experimental and computational determination of energy accommodation coefficients are considered. The influence of atmospheric parameters and surface characteristics on the aerodynamics of ultralow orbiters is analyzed.

Downloads

Download data is not yet available.

Author Biographies

Fedyanin Viktor Viktorovich, Omsk State Technical University, Omsk

Candidate of Technical Sciences, Associate Professor of the Electrical Equipment Department, Omsk State Technical University (OmSTU), Omsk.

Shalay Viktor Vladimirovich, Omsk State Technical University, Omsk, Russia

Doctor of Technical Sciences, Professor, Head of the Oil and Gas Storage, Standardization and Certification Department, OmSTU, Omsk.

References

(1). Picone J. M., Hedin A. E., Drob D. P. [et al.]. NRLMSISE‐00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research: Space Physics. 2002. Vol. 107 (A12). P. 15–16. DOI: 10.1029/2002JA009430.

(2). Bowman B., Marcos F. A., Huang C. [et al.]. A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. AIAA/AAS Astrodynamics Specialist Conference and Exhibit. 2008. DOI: 10.2514/6.2008-6438.

(3). Hanslmeier A. The NOAA space weather scales. The Sun and Space Weather. Springer, Dordrecht, 2004. P. 193–200. DOI: 10.1007/0-306-48211-8_10.

(4). Bruinsma S., Boniface C. The operational and research DTM-2020 thermosphere models. Journal of Space Weather and Space Climate. 2021. Vol. 11. P. 47. DOI: 10.1051/swsc/2021.

(5). Schmitt C., Bauer H. CHAMP attitude and orbit control system. Acta Astronautica. 2000. Vol. 46, no. 2. P. 327–333. DOI: 10.1016/S0094-5765(99)00227-1.

(6). Flury J., Bettadpur S., Tapley B. D. Precise accelerometry on board the GRACE gravity field satellite mission. Advances in Space Research. 2008. Vol. 42, no. 8. P. 1414–1423. DOI: 10.1016/j.asr.2008.05.004.

(7). Drinkwater M. R., Muzi D., Popescu A. [et al.]. The GOCE gravity mission: ESA’s first core Earth explorer. Proceedings of the 3rd International GOCE User Workshop, 6–8 November. Frascati, Italy, ESA SP-627. 2006. P. 6–8. ISBN 92-9092-938-3.

(8). Bird G. A. Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, Oxford University Press, 1994. 458 p.

(9). Doornbos E. Thermospheric density and wind determination from satellite dynamics. Springer Berlin, Heidelberg, 2012. 184 p. DOI: 10.1007/978-3-642-25129-0.

(10). Федянин В. В., Шалай В. В. Первичная оценка создания двигательной установки с возможностью использования остаточной атмосферы в качестве топлива // XLIX Академические чтения по космонавтике. 2025. Т. 1. С. 128–130.

Fedyanin V. V., Shalay V. V. Pervichnaya otsenka sozdaniya dvigatel’noy ustanovki s vozmozhnost’yu ispol’zovaniya ostatochnoy atmosfery v kachestve topliva [Initial assessment of the creation of a propulsion system with the possibility of using the residual atmosphere as fuel]. XLIX Akademicheskiye chteniya po kosmonavtike. XLIX Academic Readings on Cosmonautics. 2025. Vol. 1. P. 128–130. (In Russ).

(11). Goodman F. O. Dynamics of gas-surface scattering. Elsevier, 2012. ISBN 9780323154611.

(12). Moe K., Moe M. M. Gas–surface interactions and satellite drag coefficients. Planetary and Space Science. 2005. Vol. 53, no. 8. P. 793–801. DOI: 10.1016/j.pss.2005.03.005.

(13). Goodman F. O. Preliminary results of a three-dimensional hard-spheres theory of scattering of gas atoms from a solid surface. Proceedings of the Fifth International Symposium on Rarefied Gas Dynamics. Advances in Applied Mechanics. Academic, New York, 1967. P. 35–48.

(14). Moe M. M., Wallace S. D., Moe K. Recommended drag coefficients for aeronomic satellites. The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory. 1995. Vol. 87. P. 349–356. DOI: 10.1029/GM087.

(15). Sentman L. H. Free molecule flow theory and its application to the determination of aerodynamic forces. Lockheed Aircraft Corporation. Lockheed Missiles and Space Company. Technical report. 1961.

(16). Mehta P. M., Paul S. N., Crisp N. H. [et al.]. Satellite drag coefficient modeling for thermosphere science and mission operations. Advances in Space Research. 2023. Vol. 72, no. 12. P. 5443–5459. DOI: 10.1016/j.asr.2022.05.064.

(17). Pilinski M. D., Argrow B. M., Palo S. E. [et al.]. Semi-empirical satellite accommodation model for spherical and randomly tumbling objects. Journal of Spacecraft and Rockets. 2013. Vol. 50, no. 3. P. 556–571. DOI: 10.2514/1.A32348.

(18). Walker A., Mehta P., Koller J. Drag coefficient model using the Cercignani–Lampis–Lord gas–surface interaction model. Journal of Spacecraft and Rockets. 2014. Vol. 51, no. 5. P. 1544–1563. DOI: 10.2514/1.A32677.

Published

2025-12-26

How to Cite

Fedyanin В. В., & Shalay В. В. (2025). Features of the thermosphere for the aerodynamic analysis of ultralow orbits. Omsk Scientific Bulletin. Series «Aviation-Rocket and Power Engineering», 9(4), 88–99. https://doi.org/10.25206/2588-0373-2025-9-4-88-99

Issue

Section

Aviation and rocket-space engineering