Methodology for calculating the actuation mechanism of a movable blade system in low-specific-speed centrifugal pumps

Authors

DOI:

https://doi.org/10.25206/2588-0373-2025-9-3-57-63

Keywords:

centrifugal pump, impeller, vane grate, regulation of the centrifugal pump, energy efficiency, hydrodynamics, numerical modeling, optimization of the flow rate.

Abstract

The paper outlines the principal stages of a calculation methodology for the blade-rotation mechanism of a low-specific-speed centrifugal pump impeller. The primary objective of the proposed approach is to enhance the energy efficiency of the pumping unit. The study focuses on an impeller of the CMG M 12.5/80 pump (head H = 80 m, design flow Qопт = 12.5 m³/h).

In the first stage, the optimized geometry of the impeller’s flow passages is computed for nominal, increased and reduced flow rates. CFD results revealed that, as flow increases, the blade wrap angle must decrease while the exit angle must increase, with the leading edge remaining fixed. Based on this insight, an adaptive control strategy is adopted, prescribing a rotation angle for each blade that maximizes hydraulic efficiency at each operating point. A numerical experiment was conducted, varying the blade rotation angle at flows of 0.7 Qопт and 1.3 Qопт to derive the correlation between the blade position and the flow rate.

In the second stage, analytical expressions are derived considering the blade rotation angle to impeller outer diameter and blade exit angle, enabling construction of theoretical head curves for both fixed and adaptive blade configurations. Theoretical investigations corroborate the numerical findings. The calculation methodology has been developed for a spring-based blade actuation mechanism, for calculating the blade rotation mechanism, which is based on a spring element, and the force of which is determined by calculating the total hydraulic force acting on the blade from the working medium.

Downloads

Download data is not yet available.

Author Biographies

Denisov Konstantin Evgeneevich, National Research University “Moscow Power Engineering Institute”, Moscow

Postgraduate, Junior Researcher of the Fluid Mechanics and Hydraulic Machines Department, National Research University “Moscow Power Engineering Institute”, Moscow.

Liamasov Aleksandr Konstantinovich, National Research University «Moscow Power Engineering Institute», Moscow

Candidate of Technical Sciences, Associate Professor of the Fluid Mechanics and Hydraulic Machines Department, National Research University “Moscow Power Engineering Institute”, Moscow.

References

(1). Денисов К. Е., Лямасов А. К. Подвижные лопастные системы центробежных насосов низкой быстроходности // Омский научный вестник. Сер. Авиационно-ракетное и энергетическое машиностроение. 2025. Т. 9, № 1. С. 37–45. DOI: 10.25206/2588-0373-2025-9-1-37-45. EDN: KXKMXO.

Denisov K. E., Liamasov A. K. Podvizhnyye lopastnyye sistemy tsentrobezhnykh nasosov nizkoy bystrokhodnosti [Movable blade systems of low specific speed centrifugal pumps]. Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoye i energeticheskoye mashinostroyeniye. Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering. 2025. Vol. 9, no. 1. P. 37–45. DOI: 10.25206/2588-0373-2025-9-1-37-45. EDN: KXKMXO. (In Russ.).

(2). Клюев А. С., Федоров С. П., Иванов Е. А. [и др.]. Выбор типа отводящего устройства и оптимизация проточной части многоступенчатого центробежного насоса низкой быстроходности // Вестник МГТУ им. Н. Э. Баумана. Сер. Машиностроение. 2023. № 2. С. 98–113. DOI: 10.18698/0236-3941-2023-2-98-113. EDN: TMONKW.

Klyuyev A. S., Fedorov S. P., Ivanov E. A. [et al.]. Vybor tipa otvodyashchego ustroystva i optimizatsiya protochnoy chasti mnogostupenchatogo tsentrobezhnogo nasosa nizkoy bystrokhodnosti [Selection of the diffuser type and optimization of the flow path part of a low speed multistage centrifugal pump]. Vestnik MGTU im. N. E. Baumana. Ser. Mashinostroyeniye. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering. 2023. No. 2. P. 98–113. DOI: 10.18698/0236-3941-2023-2-98-113. EDN: TMONKW. (In Russ.).

(3). Шишкина А. С., Шишкин Г. Д., Ломакин В. О. Оптимизация проточной части центробежного насоса с лопаточным направляющим аппаратом из условия минимизации гидродинамических источников шума // Гидравлика. 2020. № 9. С. 57–68. EDN: LIHMOG.

Shishkina A. S., Shishkin G. D., Lomakin V. O. Optimizaciya protochnoj chasti centrobezhnogo nasosa s lopatochnym napravlyayushchim apparatom iz usloviya minimizacii gidrodinamicheskih istochnikov shuma [Оptimization of the flow part of a centrifugal pump with a vane guide device from the condition of minimization of hydrodynamic noise sources]. Gidravlika. Hydraulics. 2020. No. 9. P. 57–68. EDN: LIHMOG. (In Russ.).

(4). Михеев К. Г., Веселов А. А. Исследование возможности улучшения виброаккустических характеристик насоса путём оптимизации проточной части рабочего колеса // Инновации и инвестиции. 2021. № 6. С. 125–129. EDN: ZZVDMM.

Miheev K. G., Veselov A. A. Issledovanie vozmozhnosti uluchsheniya vibroakkusticheskih harakteristik nasosa putyom optimizacii protochnoj chasti rabochego kolesa [Investigation of the possibility of improving the vibroacoustic characteristics of the pump by optimizing the flow part of the impeller]. Innovacii i investicii. Innovation & Investment. 2021. No. 6. P. 125–129. EDN: ZZVDMM. (In Russ.).

(5). Wei Y., Zhu H., Fan Q. [et al.]. Numerical study of low-specific-speed centrifugal pump based on principal component analysis. Water. 2024. Vol. 16. P. 1785. DOI: 10.3390/w16131785.

(6). Тошмаматов Н. Т. Двухэтапная оптимизация проточной части рабочего колеса тихоходного центробежного насоса // Экономика и социум. 2021. № 12-2 (91). С. 615–619. EDN: FJJMNI.

Toshmamatov N. T. Dvukhetapnaya optimizatsiya protochnoy chasti rabochego kolesa tikhokhodnogo tsentrobezhnogo nasosa [Two-stage optimization for low rate pump flow]. Ekonomika i socium. Economy and Society. 2021. No. 12-2 (91). P. 615–619. EDN: FJJMNI. (In Russ.).

(7). Данилов Д. А., Зайцева А. А., Ломакин В. О. Использование методов оптимизации для получения требуемой формы характеристики центробежного насоса // Гидравлика. 2021. № 12. С. 55–63. EDN: STJVTM.

Danilov D. A., Zajceva A. A., Lomakin V. O. Ispol'zovanie metodov optimizacii dlya polucheniya trebuemoj formy harakteristiki centrobezhnogo nasosa [Application of optimization methods to obtain the required characteristic form of a centrifugal pump]. Gidravlika. Hydraulics. 2021. No. 12. P. 55–63. EDN: STJVTM. (In Russ.).

(8). Valyukhov S., Galdin D., Korotov V., Rusin V., Shablovskiy A. Profile optimization of the impeller blade of a low-speed centrifugal pump using surrogate modeling. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 779. P. 012023. DOI: 10.1088/1757-899X/779/1/012023.

(9). Li H., Chen Y., Yang Y. [et al.]. CFD Simulation of centrifugal pump with different impeller blade trailing edges. Journal of Marine Science and Engineering. 2023. Vol. 11. P. 402. DOI: 10.3390/jmse11020402.

(10). Yu J., Akoto E., Degbedzui D. K., Hu L. Predicting centrifugal pumps’ complete characteristics using machine learning. Processes. 2023. Vol. 11, no. 2. P. 524. DOI: 10.3390/pr11020524.

(11). Пат. 235479 Российская Федерация, МПК F 04 D 29/22. Рабочее колесо центробежного насоса с пружинным механизмом / Денисов К. Е., Лямасов А. К. № 2003108554/09; заявл. 15.03.2025; опубл. 10.07.2025, Бюл. № 19.

Patent No. 235479 Russian Federation, IPC F 04 D 29/11. Rabocheye koleso tsentrobezhnogo nasosa s pruzhinnym mekhanizmom [Impeller of a centrifugal pump with a spring mechanism] / Denisov K. E., Liamasov A. K. No. 2003108554/09. (In Russ.).

Published

2025-10-31

How to Cite

Denisov К. Е., & Liamasov А. К. (2025). Methodology for calculating the actuation mechanism of a movable blade system in low-specific-speed centrifugal pumps. Omsk Scientific Bulletin. Series «Aviation-Rocket and Power Engineering», 9(3), 57–63. https://doi.org/10.25206/2588-0373-2025-9-3-57-63

Issue

Section

Power and chemical engineering