Modeling of heat and mass transfer processes in nanofluids on the example of a parabolic solar collector
DOI:
https://doi.org/10.25206/2588-0373-2025-9-3-47-56Keywords:
nanofluid; concentrating, parabolic, solar collector; single-phase model; two-phase model; turbulator.Abstract
The article presents the main mathematical models for numerical simulation of heat transfer processes occurring in a nanofluid – single-phase and two-phase models. A description of the device and the principle of operation of a concentrating parabolic solar collector are demonstrated. The authors perform computational studies of heat transfer processes using the single-phase method with laminar and turbulent flow of heat transfer fluids in a smooth absorbing tube and a tube with a spiral turbulator wire. Pure water and a water-based nanofluid with Al2O3 nanoparticles with a volume concentration of 1 % are used as the heat transfer fluid. The size of Al2O3 nanoparticles is 50 nm. The research analyses the effect of using a spiral wire turbulator in a solar collector in combination with a nanofluid as a heat transfer fluid on the temperature distribution in the absorption tube.
Downloads
References
(1). Slobodina E. N., Mikhailov A. G. Application peculiarities of the higherature fluids containing nanoparticles in gas-tube boilers. Journal of Physics: Conference Series. 2020. Vol. 1652. P. 012037. DOI: 10.1088/1742-6596/1652/1/012037.
(2). Слободина Е. Н., Михайлов А. Г., Гасс Е. А. Экспериментальные и расчетные исследования процесса кипения наножидкости // Известия Транссиба. 2023. № 1 (53). С. 103–109. EDN: NYYGES.
Slobodina E. N., Mikhaylov A. G., Gass E. A. Eksperimental’nyye i raschetnyye issledovaniya protsessa kipeniya nanozhidkosti [Experimental and computational studies of the nanofluidic boiling process]. Izvestiya Transsiba. Journal of Transsib Railway Studies. 2023. No. 1 (53). P. 103–109. EDN: NYYGES. (In Russ.).
(3). Рудяк В. Я., Минаков А. В., Краснолуцкий С. Л. Физика и механика процессов теплообмена в течениях наножидкостей // Физическая мезомеханика. 2016. Т. 19, № 1. С. 75–83. EDN: VSMFOJ.
Rudyak V. Ya., Minakov A. V., Krasnolutskiy S. L. Fizika i mekhanika protsessov teploobmena v techeniyakh nanozhidkostey [Physics and mechanics of heat exchange processes in nanofluid flows]. Fizicheskaya mezomekhanika. Physical Mesomechanics. 2016. Vol. 19, no. 1. P. 75–83. EDN: VSMFOJ. (In Russ.).
(4). Maxwell J. C. A. Treatise on Electricity and Magnetism. Oxford, 1873. Vol. 1. 425 p.
(5). Hamilton R. L., Crosser O. K. Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering Chemistry Fundamentals. 1962. Vol. 1, no. 3. P. 187–191. DOI: 10.1021/i160003a005.
(6). Bruggeman D. A. G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Annalen Der Physik. 2006. Vol. 416, no. 7. P. 636–664. DOI: 10.1002/andp.19354160705.
(7). Yu W., Choi S. U. S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated maxwell model. Journal of Nanoparticle Research. 2003. Vol. 5. P. 167–171. DOI: 10.1023/a:1024438603801.
(8). Xue Q., Xu W. M. A model of thermal conductivity of nanofluids with interfacial shells. Materials Chemistry and Physics. 2005. Vol. 90. P. 298–301. DOI: 10.1016/j.matchemphys.2004.05.029.
(9). Xuan Y., Li Q., Hu W. Aggregation structure and thermal conductivity of nanofluids. AIChE Journal. 2003. Vol. 49, no. 4. P. 1038–1043. DOI: 10.1002/aic.690490420.
(10). Koo J., Kleinstreuer C. A new thermal conductivity model for nanofluids. Journal of Nanoparticle Research. 2004. Vol. 6. P. 577–588. DOI: 10.1007/s11051-004-3170-5.
(11). Chon C. H., Kihm K. D., Lee S. P. [et al.]. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Letters. 2005. Vol. 87, no. 15. P. 153107. DOI: 10.1063/1.2093936.
(12). Wang B.-X., Zhou L.-P., Peng X.-F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. International Journal of Heat and Mass Transfer. 2003. Vol. 46, no. 14. P. 2665–2672. DOI: 10.1016/s0017-9310(03)00016-4.
(13). Jang S. P., Choi S. U. S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied Physics Letters. 2004. Vol. 84, no. 21. P. 4316–4318. DOI: 10.1063/1.1756684.
(14). Pak B. C., Choi Y. I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer. 1998. Vol. 11, no. 2. P. 151–170. DOI: 10.1080/08916159808946559.
(15). Udawattha D. S., Narayana M. Development of a Model for Predicting the Effective Thermal Conductivity of Nanofluids: A Reliable Approach for Nanofluids Containing Spherical Nanoparticles. Journal of Nanofluids. 2018. Vol. 7, no. 1. P. 129–140. DOI: 10.1166/jon.2018.1428.
(16). Timofeeva E. V., Moravek M. R., Singh D. Improving the heat transfer efficiency of synthetic oil with silica nanoparticles. Journal of Colloid and Interface Science. 2011. Vol. 364, no. 1. P. 71–79. DOI: 10.1016/j.jcis.2011.08.004.
Published
How to Cite
Issue
Section
License
Non-exclusive rights to the article are transferred to the journal in full accordance with the Creative Commons License BY-NC-SA 4.0 «Attribution-NonCommercial-ShareAlike 4.0 Worldwide License (CC BY-NC-SA 4.0»)


