Development of a module of direct optimization methods for a two-dimensional automated design system of a centrifugal pump stage

Authors

DOI:

https://doi.org/10.25206/2588-0373-2025-9-3-75-82

Keywords:

direct optimization, CAD, correlation, latin hypercube, automation, Python, centrifugal pump, spiral outlet.

Abstract

The paper describes the architecture of software designed to optimize the flow paths of centrifugal pump stages. The principle of selecting geometric parameters that affect the values of the head and efficiency of the stage is described. The number of points in the design of experiments is selected and a formula for the rating of the optimization calculation is proposed. Described functionality is used to perform optimization of the flow path of a stage of console centrifugal pump stage with a speed coefficient equal to 93. Based on the obtained geometric parameters, automated modeling of 3D models of the flow path is performed, which is used to perform CFD calculations in the Ansys CFX package.

Downloads

Download data is not yet available.

Author Biographies

Staseyev Aleksandr Aleksandrovich, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg

Postgraduate at the Higher School of Power Engineering, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg; Junior Developer of the Application Software Development Department, 2LLC “NordEnergoGroup Information Technologies”, Saint Petersburg.

Zharkovskiy Aleksandr Arkad’yevich, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg

Doctor of Technical Sciences, Professor, Professor of the Higher School of Power Engineering, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg.

References

(1). Tian F., Yang C., Zhang E. [et al.]. Design Optimization of hydraulic machinery based on ISIGHT software: A review of methods and applications. Water. 2023. Vol. 15, no. 11. P. 1–15. DOI:10.3390/w15112100.

(2). Клюев А. С., Федоров А. С., Иванов Е. А., Жарковский А. А., Борщев И. О. Выбор типа отводящего устройства и оптимизация проточной части многоступенчатого центробежного насоса низкой быстроходности // Вестник Московского государственного технического университета им. Н. Э. Баумана. Серия «Машиностроение». 2023. № 2 (145). С. 98–113. DOI: 10.18698/0236-3941-2023-2-98-113. EDN: TMONKW.

Klyuyev A. S., Fedorov A. S., Ivanov E. A., Zharkovskiy A. A., Borshchev I. O. Vybor tipa otvodyashchego ustroystva i optimizatsiya protochnoy chasti mnogostupenchatogo tsentrobezhnogo nasosa nizkoy bystrokhodnosti [Selection of the diffuser type and optimization of the flow path part of a low speed multistage centrifugal pump]. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N. E. Baumana. Seriya «Mashinostroyeniye». Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering. 2023. No. 2 (145). P. 98–113. DOI: 10.18698/0236-3941-2023-2-98-113. EDN: TMONKW. (In Russ.).

(3). Волков А. В., Парыгин А. Г., Вихлянцев А. А., Дружинин А. А. К вопросу об оптимизации проточной части рабочих колѐс центробежных насосов // Надежность и безопасность энергетики. 2018. Т. 11, № 4. С. 311–318. DOI: 10.24223/1999-5555-2018-11-4-311-318. EDN: YTOLBJ.

Volkov A. V., Parygin A. G., Vikhlyantsev A. A., Druzhinin A. A. K voprosu ob optimizatsii protochnoy chasti rabochikh kolѐs tsentrobezhnykh nasosov [On optimization of flow passages of impellers of centrifugal pumps]. Nadezhnost’ i bezopasnost’ energetiki. Safety and Reliability of Power Industry. 2018. Vol. 11, no. 4. P. 311–318. DOI: 10.24223/1999-5555-2018-11-4-311-318. EDN: YTOLBJ. (In Russ.).

(4). Wang W., Pei J., Yuan S. [et al.]. Application of different surrogate models on the optimization of centrifugal pump. Journal of Mechanical Science and Technology. 2016. Vol. 30. P. 567–574. DOI: 10.1007/s12206-016-0110-0.

(5). Jaiswal A. K., Siddique M. H., Ranjan A. Surrogate-based design optimization of a centrifugal pump impeller. Engineering Optimization. 2022. Vol. 54, no. 8. P. 1395–1412. DOI: 10.1080/0305215X.2021.1932867.

(6). Wu T. X., Wu D., Gao S. Y. [et al.]. Multi-objective optimization and loss analysis of multistage centrifugal pumps. Energy. 2023. Vol. 284. P. 1–13. DOI: 10.1016/j.energy.2023.128638.

(7). Li H., Han Y., Shi W. [et al.]. Automatic optimization of centrifugal pump based on adaptive single-objective algorithm and computational fluid dynamics. Engineering Applications of Computational Fluid Mechanics. 2022. Vol. 16, no. 1. P. 2222–2242. DOI: 10.1080/19942060.2022.2143901.

(8). Стасеев А. А., Жарковский А. А. Автоматизированное проектирование 3D-моделей элементов проточной части ступени шнеко-центробежного насоса // Известия МГТУ «МАМИ». 2024. Т. 18, № 3. С. 212–221. DOI: 10.17816/2074-0530-632427. EDN: USRPXF.

Staseyev A. A., Zharkovskiy A. A. Avtomatizirovannoye proyektirovaniye 3D-modeley elementov protochnoy chasti stupeni shneko-tsentrobezhnogo nasosa [Automated design of the 3D models of the elements of the flow part of the stage of a screw-centrifugal pump]. Izvestiya MGTU “MAMI”. 2024. Vol. 18, no. 3. P. 212–221. DOI: 10.17816/2074-0530-632427. EDN: USRPXF. (In Russ.).

(9). Cтасеев А. А., Жарковский А. А. Разработка системы автоматизированного проектирования спирального отвода центробежных насосов // Гидравлические и теплотехнические системы и агрегаты: материалы XXVIII Междунар. науч.-техн. конф. Москва: Мир науки, 2024. С. 233–239.

Staseyev A. A., Zharkovskiy A. A. Razrabotka sistemy avtomatizirovannogo proyektirovaniya spiral’nogo otvoda tsentrobezhnykh nasosov [Development of an automated design system for a spiral outlet of centrifugal pumps]. Gidravlicheskiye i teplotekhnicheskiye sistemy i agregaty. Hydraulic and Thermal Systems and Units. Moscow, 2024. P. 233–239. (In Russ.).

(10). Santner T. J., Williams B. J., Notz W. I. The design and analysis of computer experiments. Springer New York, 2018. 436 p. DOI: 10.1007/978-1-4939-8847-1.

(11). Namazizadeh M., Gevari M. T., Mojaddam M., Vajdi M. Optimization of the splitter blade configuration and geometry of a centrifugal pump impeller using design of experiment. Journal of Applied Fluid Mechanics. 2020. Vol. 13, no. 1. P. 89–101. DOI: 10.29252/jafm.13.01.29856.

(12). Peng G., Ma L., Hong S. [et al.]. Optimization design and internal flow characteristics analysis based on Latin hypercube sampling method. Arabian Journal for Science and Engineering. 2025. Vol. 50. P. 2715–2754. DOI: 10.1007/s13369-024-09229-6.

(13). Arcentales X. A., Arcentales D. A., Montealegre W. Design of rotors in centrifugal pumps using the topology optimization method and parallel computing in the cloud. Machines. 2025. Vol. 13, no. 4. DOI: 10.3390/machines13040307.

(14). The experimental design package for Python. https://pythonhosted.org/pyDOE/ (accessed: 01.05.2025).

(15). SciPy StandardScaler. URL: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html (accessed: 26.04.2025).

(16). Pandas. API Reference. URL: http://pandas.pydata.org/docs/reference/api/pandas.DataFrame.corr.html (дата обращения: 29.04.2025).

Published

2025-10-31

How to Cite

Staseyev А. А., & Zharkovskiy А. А. (2025). Development of a module of direct optimization methods for a two-dimensional automated design system of a centrifugal pump stage. Omsk Scientific Bulletin. Series «Aviation-Rocket and Power Engineering», 9(3), 75–82. https://doi.org/10.25206/2588-0373-2025-9-3-75-82

Issue

Section

Power and chemical engineering