Studies of the power of high-frequency losses in the toroidal resonator of a prototype of the high-frequency ion thruster

Authors

  • Vavilov Igor Sergeevich Omsk State Technical University, Omsk
  • Zharikov Konstantin Igorevich Omsk State Technical University, Omsk https://orcid.org/0000-0002-4966-1788
  • Yachmenev Pavel Sergeevich Omsk State Technical University, Omsk https://orcid.org/0000-0003-3483-4321
  • Kuzmenko Irina Anatolievna Omsk State Technical University, Omsk
  • Volod’kov Ilya Vladislavovich Omsk State Technical University, Omsk

DOI:

https://doi.org/10.25206/2588-0373-2025-9-3-92-100

Keywords:

power of high-frequency losses, plasma, small spacecraft, nitrogen, argon, accelerating voltage, thermocouple, electrical capacity.

Abstract

The authors present a prototype of an accelerator micro thruster for a small spacecraft with a maximum power consumption of 5 W. The design is demonstrated and the main structural elements are described. Moreover, the paper also presents vacuum calorimetric studies of the power of high-frequency losses in the volume of a toroidal resonator for various working fields: air, helium, carbon dioxide, nitrogen, argon and water vapor. Due to the joint measurement of the main frequencies of the oscillator with calorimetric studies, the electrical capacitances of the oscillating circuit are obtained. With prototype 4–4.8 power consumption the calculated values of accelerating alternating voltages are 199.65–287.9 V for various gases. The measured power of high-frequency losses is 0.088–0.183 W, which is no more than 4 % of the total power consumption.

 

Funding. The research was carried out by the financial support of the Russian Science Foundation (Project no. 19-79-10038).

Downloads

Download data is not yet available.

Author Biographies

Vavilov Igor Sergeevich, Omsk State Technical University, Omsk

Candidate of Technical Sciences, Associate Professor of the Aircraft and Rocket Building Department, Omsk State Technical University (OmSTU), Omsk.

Zharikov Konstantin Igorevich, Omsk State Technical University, Omsk

Candidate of Technical Sciences, Associate Professor of the Aircraft and Rocket Building Department, OmSTU, Omsk.

Yachmenev Pavel Sergeevich, Omsk State Technical University, Omsk

Assistant, Postgraduate of the Aircraft and Rocket Building Department, OmSTU, Omsk.

Kuzmenko Irina Anatolievna, Omsk State Technical University, Omsk

Senior Lecturer of the Aircraft and Rocket Building Department, OmSTU, Omsk.

Volod’kov Ilya Vladislavovich, Omsk State Technical University, Omsk

Master’s Student of the РКм-231 group of the Aircraft and Rocket Building Department, OmSTU, Omsk.

References

(1). Вавилов И. С., Ячменев П. С., Федянин В. В. [и др.]. Экспериментальные исследования прототипа ионного двигателя времяпролетным методом // Динамика систем, механизмов и машин. 2023. Т. 11, № 2. С. 30–36. DOI: 10.25206/2310-9793-2023-11-2-30-36. EDN: KFJUEQ.

Vavilov I. S., Yachmenev P. S., Fedyanin V. V. [et al.]. Eksperimental'nye issledovaniya prototipa ionnogo dvigatelya vremyaproletnym metodom [Experimental study of ion thruster by time-of-flight method]. Dinamika sistem, mekhanizmov i mashin. Dynamics of Systems, Mechanisms and Machines. 2023. Vol. 11, no. 2. P. 30–36. DOI: 10.25206/2310-9793-2023-11-2-30-36. EDN: KFJUEQ. (In Russ.).

(2). Jarrige J., Elias P. Q., Packan D. [et al.]. Characterization of a coaxial ECR plasma thruster. 44th AIAA Plasmadynamics and Lasers Conference. 2013. P. 1–9. DOI: 10.2514/6.2013-2628.

(3). Vialis T., Jarrige J., Aanesland A. [et al.]. Direct thrust measurement of an electron cyclotron resonance plasma thruster. Journal of Propulsion and Power. 2018. Vol. 34, no. 5. P. 1–11. DOI: 10.2514/1.B37036.

(4). Charles C. Plasmas for spacecraft propulsion. Journal of Physics D: Applied Physics. 2009. Vol. 42, no. 16. P. 163001. DOI: 10.1088/0022-3727/42/16/163001.

(5). Squire J., Olsen C., Cassady L. [et al.]. Improved efficiency and throttling range of the VX-200 magnetoplasma thruster. Journal of Propulsion and Power. 2014. Vol. 30. P. 123–132. DOI: 10.2514/1.B34801.

(6). Squire J., Carter M., Diaz F. [et al.]. VASIMR® spaceflight engine system mass study and scaling with power. The 33st International Electric Propulsion Conference. USA, 2013.

(7). Chen F. F. Physics of helicon discharges. Physics of Plasmas – PHYS PLASMAS. 1996. Vol. 3, no. 5. P. 1783–1793. DOI: 10.1063/1.871697.

(8). Geller R. Electron cyclotron resonance ion sources and ECR plasmas. Routledge, 1996. 434 p. ISBN 9780203758663. DOI: 10.1201/9780203758663.

(9). Вавилов И. С., Ячменев П. С., Федянин В. В. [и др.]. Определение мощности СВЧ/ВЧ-потерь в тороидальном резонаторе ускорительного ионного двигателя по его спектру частот // Динамика систем, механизмов и машин. 2023. Т. 11, № 2. С. 21–29. DOI: 10.25206/2310-9793-2023-11-2-21-29. EDN: PTANKK.

Vavilov I. S., Yachmenev P. S., Fedyanin V. V. [et al.]. Opredeleniye moshchnosti SVCh/VCh-poter’ v toroidal’nom rezonatore uskoritel’nogo ionnogo dvigatelya po ego spektru chastot [Determination of the power of the microwave/HF losses in the toroidal resonator of the accelerator ion thruster by its frequency spectrum]. Dinamika sistem, mekhanizmov i mashin. Dynamics of Systems, Mechanisms and Machines. 2023. Vol. 11, no. 2. P. 21–29. DOI: 10.25206/2310-9793-2023-11-2-21-29. EDN: PTANKK. (In Russ.).

(10). Орлов С. И. Расчёт и конструирование коаксиальных резонаторов. Москва: Советское радио, 1970. 256 с.

Orlov S. I. Raschet i konstruirovaniye koaksial’nykh rezonatorov [Calculation and construction of coaxial resonators]. Moscow, 1970. 256 p. (In Russ.).

Published

2025-10-31

How to Cite

Vavilov И. С., Zharikov К. И., Yachmenev П. С., Kuzmenko И. А., & Volod’kov И. В. (2025). Studies of the power of high-frequency losses in the toroidal resonator of a prototype of the high-frequency ion thruster. Omsk Scientific Bulletin. Series «Aviation-Rocket and Power Engineering», 9(3), 92–100. https://doi.org/10.25206/2588-0373-2025-9-3-92-100

Issue

Section

Aviation and rocket-space engineering