

ResearcherID: B-3078-2016

ЧЕТВЕРИК Алина Наилевна, старший преподава-

тель кафедры «Электрическая техника».

SPIN-код: 2930-8935 AuthorID (РИНЦ): 688459 ORCID: 0000-0001-8470-9823 ResearcherID: O-4913-2017

Адрес для переписки: alina.an@mail.ru

КРЕЙДУНОВА Юлия Васильевна, инженер НИПИ

«Нефтегазпроект», г. Тюмень.

УДК 621.311

Адрес для переписки: kreydunovay@gmail.com

DOI: 10.25206/1813-8225-2018-162-30-35

Для цитирования

Бубнов А. В., Никонов А. В., Четверик А. Н., Крейдунова Ю. В. Улучшение динамики синхронно-синфазного электропривода в переходных режимах синхронизации и фазирования // Омский научный вестник. 2018. № 6 (162). С. 25-30. DOI: 10.25206/1813-8225-2018-162-25-30.

Статья поступила в редакцию 30.10.2018 г. © А. В. Бубнов, А. В. Никонов, А. Н. Четверик, Ю. В. Крейдунова

> В. Н. ГОРЮНОВ А. В. ДЕД Е. П. ЖИЛЕНКО Ю. П. ЛАВРИКОВ П. С. СМИРНОВ

Омский государственный технический университет, г. Омск

АНАЛИЗ СВЕДЕНИЙ О ПОТЕРЯХ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ В ФИЛИАЛАХ ПАО «МРСК СИБИРИ» ЗА ПЕРИОД С 2010 ПО 2017 ГОД

В статье представлены результаты анализа данных об отпуске электрической энергии в сеть и отпуске электрической энергии из сети основных филиалов сетевой компании ПАО «МРСК Сибири» по всем уровням напряжений. Определены средние значения показателей фактических потерь и сделана оценка уровня потерь электроэнергии основных филиалов ПАО «МРСК Сибири» на соответствие целевых показателей энергетической стратегии развития России до 2030 года.

Ключевые слова: потери электрической энергии, контроль качества электрической энергии, стратегия развития, отпуск электроэнергии.

В настоящее время состояние электрических сетей в России, по мнению значительного числа экспертов, приближается к критической степени износа. По результатам анализа состояния энергетического оборудования на объектах энергетики специалистами отмечается, что работоспособность и прочность энергосистем практически исчерпали свой запас, а электросетевой комплекс на 60-70 % основных фондов выработал свой срок службы [1]. Значительное изменение общего объёма энергопотребления, а также появление в общей структуре нагрузок новых, мощных, с переменным графиком работы потребителей может приводить, при определенных условиях, к соответствующим техническим последствиям и, следовательно, убыткам для энергетических компаний. В связи с этим вопросы экономичности работы электрических сетей являются актуальными [2-9].

Уровень потерь электроэнергии в электрических сетях является одним из важнейших показателей деятельности электросетевых компаний [10]. Рост данного показателя в перспективе может оказать непосредственное влияние на развитие экономики России, стран участников Таможенного союза и СНГ и других стран, где осуществлён переход методов управления экономик от централизованных к рыночным [11].

Энергетической стратегией России на период до 2030 года в сфере развития электросетевого комплекса ставится задача на повышение эффективности транспортировки электрической энергии путем снижения потерь электроэнергии в электрических сетях до уровня 8 % отпуска в сеть [12]:

- 2010 2015 гг. не более 12 %;
- -2016-2020 гг. не более 10 %;
- 2021 2030 гг. не более 8 %.

В рамках выполнения необходимого и обязательного не реже одного раза в пять лет обновления действующей энергетической стратегии Правительством Российской Федерации было при-

нято решение о ее корректировке с пролонгацией до 2035 года [13]. В основных положениях данного проекта значения целевых индикаторов, по отношению к потерям электроэнергии в электрических сетях от общего объема отпуска электроэнергии, разделены на два этапа и определены исходя из начальной величины потерь — 11,1%:

- 1-й этап (ориентировочно до 2020 года, с возможной пролонгацией до 2022 года) — 8,8 %;
- 2-й этап (ориентировочно с 2021 по 2035 год) — 8 %.

Достижение данных показателей является сложной комплексной проблемой, требующей значительных капитальных вложений, необходимых для оптимизации развития электрических сетей, совершенствования системы учета электроэнергии, внедрения новых информационных технологий в энергосбытовой деятельности и управления режимами сетей, обучения персонала и его оснащения средствами поверки средств измерений электроэнергии и т. п. [12].

По мнению международных экспертов допустимым и удовлетворительным уровнем относительных потерь в электросетях для развитых стран можно считать значение от 4 до 5 %. Максимально допустимый уровень потерь с учетом особенностей физического процесса транспортировки электрической энергии посредством магистральных и распределительных сетей определен в 10 % [14].

В случае, если вышеуказанные значения не выполняются в электрических сетях, то можно с большой долей вероятности утверждать о наличии в составе отчетных потерь составляющей коммерческих потерь.

Авторами данной статьи были проанализированы сведения об отпуске электрической энергии в сеть и отпуске электрической энергии из сети по всем уровням напряжений основных филиалов ПАО «МРСК Сибири», находящихся в открытом доступе на сайте гарантирующего поставщика, с целью определения динамики и структуры потерь электрической энергии по уровням напряжений ПАО «МРСК Сибири» в целом.

Основные сводные данные по величине отпуска электрической энергии в сеть за период с 2010 по 2017 года по данным официального сайта

Таблица 1 Информация об отпуске электрической энергии в сеть по всем уровням напряжений (млн кВт×ч/год)

Наименование филиала «МРСК Сибири»	2010	2011	2012	2013	2014	2015	2016	2017
«Алтайэнерго»	8542	7963	8152	7956	7792	7570	7628	7571
«Бурятэнерго»	3706	3594	3664	3680	4479	4416	4410	4447
«ГАЭС»	537	542	561	546	548	542	540	530
«Красноярскэнерго»	19208	18628	18817	18153	15101	14201	14407	14089
«Кузбассэнерго-РЭС»	24139	24260	24258	20871	19563	16902	16310	16124
«Омскэнерго»	8859	8748	9024	8829	8950	8799	8531	8598
«Хакасэнерго»	12510	11611	12260	11435	11524	11586	11670	7197
«Читаэнерго»	3618	3616	3788	3778	6165	6146	6476	6241
«Тываэнерго»	1953	645	659	647	644	685	713	711
Итого по «МРСК Сибири»	83072	79604	81183	75895	74766	70846	70686	65507

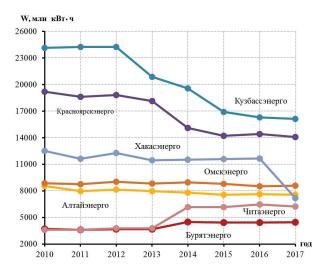


Рис. 1. Динамика отпуска электрической энергии основных филиалов ПАО «МРСК Сибири» за 2010-2017 год

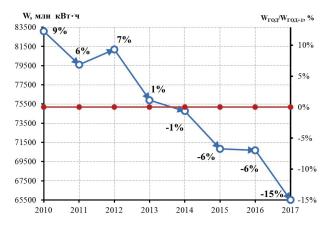


Рис. 2. Динамика суммарного отпуска электрической энергии филиалов ПАО «МРСК Сибири» за 2010-2017 год

Наименование филиала «МРСК Сибири»	2010	2011	2012	2013	2014	2015	2016	2017
«Алтайэнерго»	9,9	9,6	9,4	8,1	8,0	7,7	7,6	7,2
«Бурятэнерго»	19,1	17,2	15,0	12,6	9,4	7,8	7,0	6,7
«ГАЭС»	19,8	19,1	18,0	16,7	15,8	16,4	16,8	15,6
«Красноярскэнерго»	13,5	12,9	12,4	11,1	12,6	11,3	13,3	11,6
«Кузбассэнерго-РЭС»	4,8	4,4	4,0	4,1	3,8	4,1	4,4	4,3
«Омскэнерго»	8,7	8,7	8,3	7,8	7,5	7,2	7,2	7,5
«Хакасэнерго»	22,8	3,5	3,0	2,7	2,5	2,2	2,1	3,2
«Читаэнерго»	3,8	20,7	19,4	18,1	11,0	11,1	10,1	9,9
«Тываэнерго»	39,7	42,8	42,9	41,5	39,9	38,0	38,9	36,1
Среднее значение по «МРСК Сибири»	15,8	15,4	14,7	13,6	12,3	11,8	11,9	11,3

Динамика фактических потерь электрической энергии по всем уровням напряжений (%/год)

ПАО «МРСК Сибири» [15] представлены в табл. 1 и на рис. 1.

Среднее значение отпуска электрической энергии в сеть за исследуемый временной период составило 75 195 млн кВт-ч. Следует отметить, что абсолютная величина отпуска электрической энергии в сеть за исследуемый период имела тенденцию к ежегодному снижению (рис. 2). В частности, минимальный отпуск энергии в сеть 2017 года составил только 80 % от максимального отпуска энергии, зафиксированного в 2010 году. Снижение общей величины отпуска обусловлено ежегодным уменьшением отпуска энергии в основных (от 57 до 68 % по объемам передачи) филиалах ПАО «МРСК Сибири» — «Кузбассэнерго», «Красноярскэнерго» и «Хакасэнерго» (рис. 1). Остальные филиалы ПАО «МРСК Сибири», такие как «Алтайэнерго», «Бурятэнерго», «Горно-Алтайские электрические сети», «Омскэнерго», «Читаэнерго» и «Тываэнерго» обеспечивали изменение отпуска электроэнергии в пределах 2-5 % в сторону увеличения или уменьшения соответственно в зависимости от года.

Сведения относительно динамики фактических потерь электрической энергии в процентах от общего отпуска электрической энергии в сеть за 2012-2017 годы представлены в табл. 2 и на рис. 3 [15]. Общую структуру потерь электроэнергии в электрических сетях ПАО «МРСК Сибири» можно рассмотреть на примере филиалов «Красноярскэнерго» и «Омскэнерго» (рис. 4). Как видно из полученных графиков, чем ниже уровень напряжения, тем выше уровень потерь, что, в свою очередь, обусловлено увеличением доли потерь в трансформаторах и снижением в линиях электропередач, так как чем ниже номинальное напряжение сети, тем на 1 км линии приходится больше подстанций [14]. В то же время принято считать, что коммерческие потери в основном сосредоточены именно в сетях низкого напряжения 0,4 кВ и общая их доля в величине суммарных потерь по стране в целом может достигать до 40 % [14]. Рассмотрим ситуацию с величиной отпуска и потерями в сетях низкого напряжения более подробно.

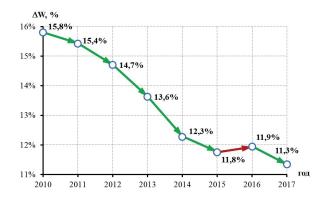


Рис. 3. Динамика изменения среднего значения фактических потерь электрической энергии по всем уровням напряжений основных филиалов ПАО «МРСК Сибири» за 2010-2017 год

Имеющиеся сведения по отпуску электроэнергии филиалов ПАО «МРСК Сибири» в сетях низкого напряжения данные сведены в табл. 3. Средняя величина отпуска в сеть низкого напряжения составляет 21 % от общего отпуска электрической энергии — 1 281 млн кВтч, при этом, следуя общей тенденции, ежегодный отпуск в сеть низкого напряжения снижался в среднем на 6,5 % в сравнении с отпуском электрической энергии прошлого года.

Динамика изменения среднего значения фактических потерь электрической энергии в сетях низкого напряжений основных филиалов ПАО «МРСК-Сибири» за 2012-2017 год представлена на рис. 5. Среднее значение фактических потерь для напряжения данного уровня составило 14,8 %. Необходимо отметить, что за исключением филиала ПАО «МРСК Сибири» — «Тываэнерго», где уровень потерь, обусловленный, в первую очередь, высокой долей коммерческих потерь, держится на протяжении всего исследуемого периода на очень высоком значении в 33 %, в остальных филиалах ПАО «МРСК Сибири» значение потерь составляет в среднем 12,5 %. Наименьший средний уровень потерь в сети напряжения низкого уровня харак-

Таблица 3

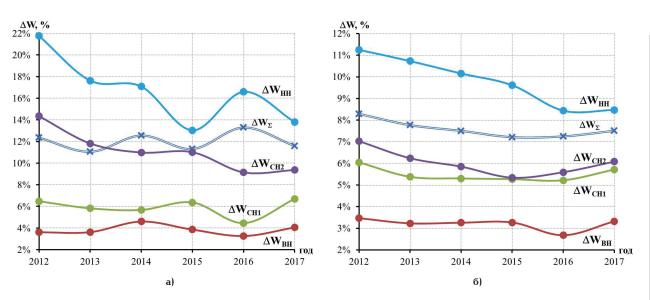


Рис. 4. Динамика изменения значений фактических потерь электрической энергии за 2010-2017 год по всем уровням напряжений филиала ПАО «МРСК Сибири»: a) «Красноярскэнерго»; б) «Омскэнерго»

Динамика отпуска электрической энергии в сеть низкого напряжения (млн кВт×ч/год)

Наименование филиала «МРСК Сибири»	2012	2013	2014	2015	2016	2017
«Алтайэнерго»	1 142	1 134	1 156	1 154	1 206	1 210
«Бурятэнерго»	730	764	745	737	715	723
«ГАЭС»	220	210	204	214	218	219
«Красноярскэнерго»	2 963	2 792	2 713	2 564	3 135	2 809
«Кузбассэнерго-РЭС»	4 320	4 256	4 251	1 666	898	720
«Омскэнерго»	1 179	1 220	1 229	1 237	1 268	1 255
«Хакасэнерго»	750	715	706	695	734	721
«Читаэнерго»	1 363	1 445	1 480	1 548	1 613	1 591
«Тываэнерго»	417	410	431	442	462	474
Итого по «МРСК Сибири»	13 084	12 946	12 914	10 257	10 250	9 723

терен для сетей филиалов ПАО «МРСК Сибири» — «Кузбассэнерго» (≈ 7.5 %) и «Омскэнерго» (≈ 9.8 %) (табл. 4).

Относительно филиала ПАО «МРСК Сибири», обеспечивающего энергоснабжение предприятий Омского региона — «Омскэнерго», имеющиеся данные говорят о том, что фактический отпуск электрической энергии держится на стабильном уровне, при колебании не более 1 % в год, и составляет в среднем 1 242 млн кВтч. При этом уровень фактических потерь за аналогичный период снизился на 2,78 % с величины 11,25 % до 8,47 % (рис. 6.)

Из анализа данных следует, что в среднем потери по всем филиалам ПАО «МРСК Сибири» по сравнению с начальным периодом 2010—2012 годов были снижены в среднем на 3,3 %, причем необходимо отметить, что если в сетях «Бурятэнерго» потери снизились на величину почти в 11 %, то в сетях «Кузбассэнерго-РЭС» значения потерь, наоборот, возросли на 9 %, что связано, скорее всего, в первую очередь с перераспределением при-

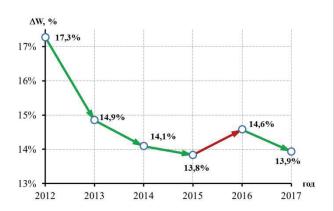


Рис. 5. Динамика изменения среднего значения фактических потерь электрической энергии в сетях низкого напряжений основных филиалов ПАО «МРСК Сибири» за 2012–2017 год

Динамика фактических потерь электрической энергии в сетях низкого напряжения (%/год)

Наименование филиала «МРСК Сибири»	2012	2013	2014	2015	2016	2017	Среднее значение по филиалу
«Алтайэнерго»	13,5 %	11,4 %	10,6 %	9,9 %	10,9 %	11,3 %	11,3 %
«Бурятэнерго»	20,2 %	14,7 %	13,3 %	11,5 %	8,7 %	9,8 %	13,0 %
«ГАЭС»	14,1 %	12,7 %	12,6 %	12,8 %	12,8 %	12,5 %	12,9 %
«Красноярскэнерго»	21,8 %	17,6 %	17,1 %	13,0 %	16,6 %	13,8 %	16,6 %
«Кузбассэнерго-РЭС»	3,8 %	3,4 %	3,0 %	8,1 %	13,8 %	12,8 %	7,5 %
«Омскэнерго»	11,3 %	10,7 %	10,2 %	9,6 %	8,4 %	8,5 %	9,8 %
«Хакасэнерго»	18,9 %	15,3 %	13,1 %	12,7 %	12,7 %	12,4 %	14,2 %
«Читаэнерго»	16,9 %	14,7 %	14,9 %	15,0 %	13,5 %	12,7 %	14,6 %
«Тываэнерго»	35,0 %	33,1 %	32,0 %	32,0 %	33,9 %	31,6 %	32,9 %
Среднее значение по «МРСК Сибири»	17,3%	14,9 %	14,1 %	13,8 %	14,6 %	13,9 %	14,8 %

надлежности электроснабжающих сетей внутри и (или) между филиалами ПАО «МРСК Сибири».

Немаловажен тот факт, что, в общем, за последние пять лет средняя величина потерь электрической энергии в сетях низкого напряжения, независимо от филиала, не сделала качественный шаг в сторону значительного уменьшения. По мнению авторов, это связано с тем, что возможное снижение уровня технических потерь, имеющих место в виде нагрузочных потерь в линиях, путем реализации организационных и финансово затратных технических мероприятий достигло своих результатов и на первый план выступают потери, присутствующие в трансформаторах напряжения. По данным ПАО «МРСК Сибири», в ее фиалах насчитывается более 51 500 трансформаторных подстанций, участвующих в преобразовании и передаче электрической энергии [ссылка на сайт]:

- «Алтайэнерго» ≈ 10 800 шт.;
- «Омскэнерго» ≈ 9 900 шт.;
- «Красноярскэнерго» ≈ 9 800 шт.;
- «Кузбассэнерго» ≈ 4 500 шт.;
- «Тываэнерго» ≈ 1 100 шт. и др.

Как известно, потери в трансформаторах напряжением 6 (10)/0,4 кВ могут достигать величины более 65 % от всех потерь в трансформаторах напряжением 6-110 кВ. Значительную часть в структуре общих потерь в трансформаторах 6 (10)/0,4 кВ составляют потери холостого хода (около 80 %), которые могут превышать нагрузочные потери почти в 5 раз [16]. По данным специалистов, для трансформаторов с высшим напряжением 35 и 110 кВ характера величина потерь в пределах 33 % от общих потерь в трансформаторах 6-10 кВ. В данном случае потери холостого хода превышают нагрузочные потери приблизительно в 6 раз и составляют около 85 % от общих потерь в трансформаторах [16].

Анализ динамики отпуска электрической энергии и структуры потерь позволил определить, что основные потери электроэнергии приходятся на электрические сети 0,38-10 кВ. Здесь, опираясь на опыт проведенных испытаний, следует отметить, что практически 90 % трансформаторов, независи-

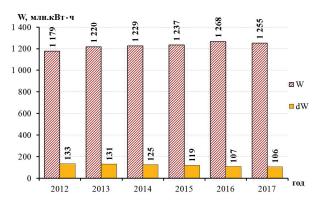


Рис. 6. Отпуск и фактические потери электрической энергии в сетях низкого напряжения филиала ПАО «МРСК Сибири» — «Омскэнерго» за 2012-2017 год

мо от класса напряжения, являются недогруженными, что приводит, в свою очередь, к росту величины составляющей потерь холостого хода [4, 16].

В целом суммарные потери электроэнергии в сетях 0,38-110 кВ ПАО «МРСК Сибири» в зависимости от филиала изменяются в пределах от 7,2 до 36,1 % и обеспечивают среднее значение уровня потерь на величине 13,65 % Таким образом, нынешняя ситуация, для обеспечения достижения и поддержания в филиалах ПАО «МРСК Сибири» обозначенных планом стратегического развития электроэнергетической отрасли к 2030 году реперных точек (индикаторов) в области эффективности электроэнергетики — снижение потерь в электрических сетях (процентов отпуска электроэнергии в сеть) до 8 %, требует проведения мероприятий технического и организационного характера, направленных на снижение потерь как технологических, так и коммерческих.

Библиографический список

1. Анализ состояния энергетического оборудования на объектах энергетики, требующего замены в организациях ТЭК, а также сравнительная характеристика о темпах замены данного оборудования за отчетные периоды на 1 ноября 2015 г. URL: https://pandia.ru/text/80/107/54030.php (дата обращения: 29.10.2018).

- 2. Бигун А. Я., Гиршин С. С., Петрова Е. В., Горюнов В. Н. Учет температуры проводов повышенной пропускной способности при выборе мероприятий по снижению потерь энергии на примере компенсации реактивной мощности // Современные проблемы науки и образования. 2015. № 1-1. С. 212−220.
- 3. Петрова Е. В., Гиршин С. С., Бигун А. Я., Горюнов В. Н. Учет температуры проводов при выборе устройств компенсации реактивной мощности в линиях электропередачи с высокотемпературными и самонесущими изолированными проводами условий // Омский научный вестник. 2016. № 4 (148). С. 99-105.
- 4. Дед А. В., Сикорский С. П., Смирнов П. С. Результаты измерений показателей качества электроэнергии в системах электроснабжения предприятий и организаций // Омский научный вестник. 2018. № 2 (158). С. 60 63.
- 5. Гапиров Р. А., Осипов Д. С. Расчет потерь мощности в элементах системы электроснабжения с учетом высших гармоник и зависимости сопротивлений токоведущих частей от температуры // Промышленная энергетика. 2015. № 1. С. 16-21.
- 6. Пономаренко И. С., Дичина О. В., Скорняков А. Ю. [и др.]. Повышение экономической эффективности работы распределительных электрических сетей за счёт снижения коммерческих потерь электроэнергии и организации контроля её качества // Энергетик. 2014. № 8. С. 24-29.
- 7. Дед А. В. К проблеме современного состояния уровней показателей несимметрии напряжений и токов в сетях 0,4 кВ // Омский научный вестник. 2017. № 2 (152). С. 63 65.
- 8. Наумов И. В. О качестве электрической энергии и дополнительных потерях мощности в распределительных сетях низкого напряжения России и Германии // Электрика. 2005. № 11. С. 19 22.
- 9. Werther B., Becker A., Schmiesing J. Voltage control in low voltage systems with controlled low voltage transformer (CLVT) // CIRED 2012 Workshop Integration of Renewables into the Distribution Grid. IET. Lisbon, 29-30 May. 2012. P. 225.
- 10. Шклярский Я. В., Брагин А. А. Снижение потерь энергии в электрических сетях предприятий // Известия вузов. Горный журнал. 2013. № 1. С. 99-103.
- 11. Воротницкий В. Э., Калинкина М. А., Комкова Е. В. [и др.] Снижение потерь электроэнергии в электрических сетях. Динамика, структура, методы анализа и мероприятия // Энергосбережение. 2005. № 2. С. 2-6.
- 12. Об энергетической стратегии России на период до 2030 года: распоряжение Правительства Российской Федерации от 13 ноября 2009 г. № 1715-р. URL: https://www.consultant.ru/popular/ (дата обращения: 29.10.2018).
- 13. Проект энергостратегии Российской Федерации на период до 2035 года (редакция от 01.02.2017). URL: https://

minenergo.gov.ru/modal/view-pdf/1920/69055/nojs (дата обращения: 29.10.2018).

- 14. Шведов Г. В., Сипачева О. В., Савченко О. В. Потери электроэнергии при ее транспорте по электрическим сетям: расчет, анализ, нормирование и снижение. М.: Издат. дом МЭИ. 2013. 424 с. ISBN 978-5-383-00832-4.
- 15. Потери электроэнергии в сетях. URL: https://www.mrsk-sib.ru/index.php?option=com_content&view=featured&Itemid=558&lang=ru03 (дата обращения: 29.10.2018).
- 16. Смоловик С. В., Халилов Ф. Х. Анализ технического состояния электрических сетей 0.38-110 кВ Российской Федерации» // Труды Кольского научного центра РАН. 2011. № 2 (5). С. 24-29.

ГОРЮНОВ Владимир Николаевич, доктор технических наук, профессор (Россия), заведующий кафедрой «Электроснабжение промышленных предприятий».

SPIN-код: 2765-2945

AuthorID (РИНЦ): 302109 AuthorID (SCOPUS): 7003455231

ДЕД Александр Викторович, старший преподаватель кафедры «Электроснабжение промышленных предприятий».

SPIN-код: 5237-6697

AuthorID (РИНЦ): 512774 ORCID: 0000-0001-5625-8869

Адрес для переписки: ded_av@mail.ru

ЖИЛЕНКО Елена Петровна, старший преподаватель кафедры «Электроснабжение промышленных

Адрес для переписки: elenazhilenko@yandex.ru

ЛАВРИКОВ Юрий Петрович, магистрант гр. ЭЭм-181 факультета элитного образования и магистратуры.

СМИРНОВ Павел Сергеевич, магистрант гр. ЭЭм-172 факультета элитного образования и магистратуры.

Для цитирования

Горюнов В. Н., Дед А. В., Жиленко Е. П., Лавриков Ю. П., Смирнов П. С. Анализ сведений о потерях электрической энергии в филиалах ПАО «МРСК Сибири» за период с 2010 по 2017 год // Омский научный вестник. 2018. № 6 (162). С. 30-35. DOI: 10.25206/1813-8225-2018-162-30-35.

Статья поступила в редакцию 27.10.2018 г.

© В. Н. Горюнов, А. В. Дед, Е. П. Жиленко, Ю. П. Лавриков, П. С. Смирнов