ОМСКИЙ НАУЧНЫЙ ВЕСТНИК № 4 (166)

2019

АО «НПО Лавочкина», Московская область, г. Химки

СОВЕРШЕНСТВОВАНИЕ СПОСОБОВ И СРЕДСТВ КОНТРОЛЯ ОТКЛОНЕНИЙ ОТ ПРЯМОЛИНЕЙНОСТИ НА ОСНОВЕ АКУСТООПТИЧЕСКИХ ГЕТЕРОДИННЫХ ЛАЗЕРНЫХ ИЗМЕРИТЕЛЬНЫХ СИСТЕМ

В статье рассматриваются вопросы построения высокоточных акустооптических (AO) гетеродинных лазерных измерительных систем контроля отклонений от прямолинейности при работе в непрерывном режиме с фазо-цифровым $\Delta \phi [\Delta I_y] - \Delta N_{_{Bb/X}}$ и частотно-цифровым $\Delta f [\Delta I_y] - \Delta N_{_{Bb/X}}$ преобразованиями, а также в импульсном режиме. Обсуждаются вопросы применения твердотельных AO модуляторов, систем фазовой автоподстройки фазы и частоты совместно с волоконными фазомодуляторами и прецизионными AUП. Предложены варианты линеаризации функции преобразования, повышения разрешающей способности. Рассматриваются возможности реализации лазерных измерительных систем с опорными каналами и допускового контроля.

Ключевые слова: отклонение от прямолинейности, лазерная измерительная система, акустооптический модулятор, фазовая автоподстройка, фазовый сдвиг, фазомодулятор, фазо-цифровое преобразование, частотно-цифровое преобразование.

Введение. Для высокоточного контроля отклонений от прямолинейности активно используются акустооптические (AO) лазерные измерительные системы (ЛИС) [1-4]. В них каретка 3 с отражательной триппель-призмой 2 перемещается по изделию 4 вдоль (по оси ОХ) освещающего луча лазера 1, вынужденно смещаясь по осям ОУ и ОZ, а отраженный от нее и смещенный на Δl_y и Δl_z , лазерный луч следует на оптический вход АО модулятора, возбуждаемый генератором 6, с двумя ортогональными бегущими ультразвуковыми волнами (УЗВ) или двух скрещенных АО модуляторов 5, расположенных последовательно (рис. 1а).

ЛИС могут осуществлять фазовый и частотный процессы преобразований, формируя соответствующие выходные сигналы: $\Delta \varphi(\Delta I_y)$, $\Delta \varphi(\Delta I_z)$ и $\Delta f(\Delta I_y)$, $\Delta f(\Delta I_z)$. На рис. 1б показана ЛИС с возможностью работы с двумя процессами преобразований при замыкании переключателями 7 контактов «1-3» и «2-3» [5]. Фазовые и частотные функции преобразования можно записать выражениями (на примере смещений по оси ОҮ):

$$\Delta \varphi(\Delta l_y) = \frac{2\pi \Delta l_y}{\Lambda},\tag{1}$$

$$\Delta f(\Delta I_y) = -f_0 \frac{\Delta I_y}{L_{aom} + \Delta I_y},$$
(2)

где Δl_y — поперечные смещения лазерного луча вдоль оси ОҮ, Л — длина бегущей ультразвуковой волны в АО модуляторе.

Несмотря на нелинейность частотного преобразования информации, согласно формуле (2), из-за дроби $\frac{\Delta l_y}{L_{aom} + \Delta l_y}$ в [1] для водяного АО модулятора при частоте АО модуляции ≈8 МГц и Л≈200 мкм получена высокая разрешающая способность ≈ $\Lambda/1214$ ≈0,16 мкм.

В продольном направлении к лазерному лучу (вдоль оси ОХ) современные лазерные интерферометры перемещений позволяют достичь разрешающей способности на уровне $\approx \lambda/3000....\lambda/1000$, т.е. на уровне $\approx 0,2...$ 0,6 нм [5, 6], где λ — длина волны света, $\lambda = 0,6328$ мкм для гелий-неонового лазера. Как видно, разрешающие способности для ортогональных (оси ОҮ и ОΖ) и продольного (ось ОХ) направлений к лазерному лучу связаны с длинами волн звука Λ и света λ , а отношение Λ/λ может достигать от ≈ 10 до 350. Поэтому важным вопросом контроля отклонений от прямолинейности является обеспечение равных разрешающей способности в разных направлениях: $\Delta l_e \approx \Delta l_e$.

В наши дни стало доступно многое из передовых электронных устройств: прецизионные АЦП с разрядностью вплоть 24 бит, системы и элементы ФАПЧ в интегральном исполнении, твердотельные АОМ с малыми длинами волн звука Л, волоконные фазомодуляторы и др. Это позволяет создавать новые более перспективные ЛИС, подобные ранее уже созданным [6, 7]. Такие исследования недостаточно представлены в открытой печати и данная статья направлена на восполнение этого пробела.

Далее представлены новые ЛИС на примере контроля отклонений от прямолинейности вдоль оси ОҮ, при этом для их непрерывного режима используется дифракция света Рамана – Ната или Брэгга на бегущей УЗВ в АО модуляторах, а для импульсно-

72

цифровая ФАПЧ

го режима — преимущественно Брэгга. Представлены базовые схемы, которые могут иметь варианты со своими индивидуальными конструктивными погрешностями измерений, поэтому для анализа точностных преимущественно используется разрешающая способность ЛИС.

1. ЛИС с системами фазовой автоподстройки. В разделе рассмотрены ЛИС с введением контура на основе систем фазовой автоподстройки фазы (ФАПФ) [6] и частоты (ФАПЧ) [3], осуществляющие компенсацию (уравновешивание) входного сдвига фазы $\Delta \phi(\Delta l_{v})$ кодоуправляемым волоконным фазомодулятором.

1.1. ЛИС с системой ФАПФ и фазо-цифровым преобразованием. Конструкция ЛИС данного типа близка к описанной выше и представленной на рис. 16 схеме с замыканием контактов «1-3»

переключателя 7, а её особенность заключается во введении системы ФАПФ с АЦП. В разделе рассмотрены ЛИС с единым контуром компенсации фазы и опорным каналом и раздельным управлением частотой и фазой.

12

14

ЛЛ

б)

13

11

1.1.1. ЛИС без опорного канала. Один из вариантов фазо-цифрового преобразования основан на нулевом методе измерения, в котором входной фазовый сдвиг Δφ(Δl_ν) сравнивают (уравновешивают) с мерой, доводя разницу до нуля. Фазовую меру в данных ЛИС формируют кодоуправляемые волоконные фазомодуляторы 12 (рис. 2-4), которые могут быть включены как в оптический канал, так и в электрический между излучателем и приемником.

В системе ФАПФ (рис. 1а) частотный сигнал от генератора 6 следует через волоконный фазомо-

 U_l сигнал АС модуляции U_2 6 U_0 a) б) Рис. 1. Общий вид ЛИС отклонений от прямолинейности на основе двух скрещенных AOM (a); её измерительная схема с возможностями фазового и частотного преобразования информации (б)

граектория движения

Рис. 2. Схемы ЛИС с системой ФАПФ и волоконным фазомодулятором: без опорного канала (а), с опорным каналом (б)

1

5

Рис. 4. Схема импульсной ЛИС (а), ход оптических лучей в АО модуляторе (б)

дулятор 12 на электрический вход АО модулятора 5 и на опорный вход фазового детектора 9. На другой его вход поступает измерительный сигнал от фотоприемника 8. Сигнал на разностной частоте с фазовым сдвигом Δφ(Δl_y), вызванным смещением Δl_y, поступает на вход компаратора 10, который вместе со счетчиком 11 (логическая схема направления счета не показана), формирующим выходной цифровой код ΔN_{вых}, фактически, реализует фазо-цифровое преобразование в следящем режиме, аналогично хорошо известному аналого-цифровому преобразованию.

Так, в [8] волоконный фазомодулятор выполнен на основе пьезокерамического цилиндра высотой 30 мм с внешним и внутренним диаметрами 85 мм и 77 мм соответственно с однослойной намоткой 27 м оптического волокна Corning SMF-28 [9]. Под действием напряжения, приложенного к контактам, нанесенным на внутреннюю и внешнюю поверхности цилиндра, его диаметр меняется, приводя к модуляция фазы света за счет удлинения волокна и фотоупругого эффекта (изменения показателя преломления). Чувствительность модулятора может быть $\Delta \phi_{dnm} = 0.06 - 0.08$ рад/В виток [10]. Примем, что используемый в ЛИС волоконный фазомодулятор содержит встроенный цифро-аналоговый преобразователь, являясь фактически цифро-фазовым преобразователем (ЦФП) управляемый цифровым кодом $\Delta N_{\rm BMY}$:

$$\Delta \varphi_{\phi_{nM}} = k_{\phi_{nM}} \Delta U_{\phi_{nM}}.$$
 (3)

В связи с тем что на входе фазового детектора 9 фазовый сдвиг, вносимый волоконным фазомодулятором $\Delta \varphi_{\phi_{IIM}}$ компенсирует входной фазовый сдвиг $\Delta \varphi(\Delta I_{v})$, можно записать уравнение баланса фаз:

$$\Delta \varphi(\Delta l_{y}) - \Delta \varphi_{\phi_{DM}} = \Delta \varphi_{\phi_{g}}. \tag{4}$$

Согласно этому уравнению, возможны полная ($\Delta \phi_{\phi g} \rightarrow 0$) и частичная ($\Delta \phi_{\phi g} = var$) компенсации входного фазового сдвига $\Delta \phi(\Delta I_y)$. Для первого случая выражение (5) принимает вид $\Delta \phi(\Delta I_y) = \Delta \phi_{\phi_{nn'}}$ а с учетом формул (1) и (3) можно записать

$$\Delta N_{\scriptscriptstyle Bbix} = \frac{\Delta l_y}{\Lambda k_{\scriptscriptstyle agy} k_{\scriptscriptstyle uan}} \,. \tag{5}$$

Так как пространственный период l_{nn} равен Λ_{i} то суммарное перемещение ΔL_{v} будет опре-

деляться целой N_{uen} и дробной частями от Λ : $\Delta L = N + \Delta N - \frac{\Lambda}{2}$.

$$\Delta L_{y} = N_{uea} \cdot \Lambda + \Delta N_{Bblx} \frac{1}{N_{max}}$$

/

Для второго случая с частичной компенсацией имеем $\Delta \phi_{\phi_{nm}} = k_{\phi_{an\phi}} \Delta \phi_{\phi_{g'}}$ и тогда с учетом формул (1) и (4) получим

$$\frac{2\pi\Delta I_y}{\Lambda} = \Delta \varphi_{\phi g} + k_{\phi a n \phi} \cdot \Delta \varphi_{\phi g} = \Delta \varphi_{\phi g} \left(1 + k_{\phi a n \phi} \right). \tag{6}$$

При $\Delta \phi_{dg} = 2\pi$, а перемещение Δl_y является максимальными и соответствует пространственному периоду l_{nn} и на основе выражения (6) можно записать

$$l_{nn} = \Lambda \left(1 + k_{\phi an\phi} \right). \tag{7}$$

$$\Delta N_{\scriptscriptstyle Bbax} = \frac{\Delta l_y}{l_{\scriptscriptstyle nn}} = \frac{\Delta l_y}{\Lambda \left(1 + k_{\phi an\phi}\right)}.$$
(8)

При использовании 14-разрядного ЦАП (с числом квантов 2¹⁴=16384) в системе ФАПФ для режима полной компенсации входного фазового сдвига разрешающая способность при Λ, равном ≈200 мкм и 10,3 мкм для АО модуляторов на основе воды и кристалла TeO₂ составит ≈12 нм и 0,6 нм соответственно. Однако в данной ЛИС присутствует погрешность, вносимая АО преобразованием, вариант исключения которой рассмотрен при введении опорного канала.

1.1.2. ЛИС с опорным каналом. В данной схеме верхняя часть триппель-призмы 2, освещаемой лазерным лучом, формируется полупрозрачной для создания опорного лазерного луча, пропускаемого через АО модулятор для регистрации фотоприемником 8 опорного канала (рис. 2б). Волоконный фазомодулятор 12 включен в оптический измерительный канал, генератор 6 подключен напрямую к АО модулятор 5.

В устоявшемся равновесном режиме ЛИС влияние погрешностей, вносимых АО модулятора, на измерительный опорный канал одинаково, и они компенсирует друг друга в фазовом детекторе 9. Его выходной сигнал поступает на усилитель 13 (фильтр низких частот не показан) и на вход АЦП 11, выходной код $\Delta N_{\rm вых}$ которого следует на вход волоконного фазомодулятора 12 и является выходным для всей схемы. Подавление шумов, свойственное для систем фазовой автоподстройки, может допол-

73

ОМСКИЙ НАУЧНЫЙ ВЕСТНИК № 4 (166) 2019

нительно подавляться АЦП двухтактного интегрирования или дельта-сигма.

1.2. АИС с системой ФАПЧ и частотно-цифровым преобразованием. Представленные далее АИС являются развитием разработанной автором в 1996 году АИС с частотным выходом с включенной последовательно с АО модулятором автокомпенсационной дисперсной линии задержки [3] для устранения нелинейности в выражении (2).

1.2.1. ЛИС без опорного канала. Данная ЛИС (рис. За) с системой ФАПЧ [11] подобна ЛИС с системой ФАПФ (рис. 2а), рассмотренной выше. И особенность ее работы заключается в необходимости формирования переменного сигнала, поступающего на возбуждение АОМ 5, с изменениями не только частоты, но и фазы синтезатором частоты 14 и волоконным фазомодулятором 12 соответственно:

$$U = U_0 \sin[2\pi f(\Delta l_y)t + \varphi(\Delta l_y)], \qquad (9)$$

где $f(\Delta l_y) = k_{\phi anv} \Delta l_y$ и $\phi(\Delta l_y) = -k_{AS} \Delta l_y$ — текущие значения частоты и фазы, зависящие от перемещения Δl_y . Соответственно, в схему дополнительно введен синтезатор частот 14, например, на основе микросхемы ADF5610, описанной в [12].

Это осложняет работу данной ЛИС и создает условия для возникновения дополнительной погрешности, вызванной рассогласованием управления волоконного фазомодулятора и синтезатором частот. В остальном алгоритм работы ЛИС с системой ФАПЧ подобен описанному лазерному интерферометру, исследованному в [9].

Функцию преобразования и пространственный период для данной ЛИС можно записать в виде

$$\Delta f = k_n \cdot \Delta \phi \ . \tag{10}$$

$$I_{nn} = \frac{V_{\scriptscriptstyle 3B}}{2\pi \left(L_{aom} + L_{\scriptscriptstyle B\phi M} \right)} \cdot \frac{1}{k_n} \cdot \lambda , \qquad (11)$$

где *L*_{вфм} — постоянная времени задержки сигнала в волоконном фазомодуляторе, которая позволяет линеаризовать функцию преобразования ЛИС.

1.2.2. ЛИС с опорным каналом. Повышение точности измерений обусловливает необходимость введения в ЛИС опорного канала, схема которой также подобна ЛИС с системой ФАПФ (рис. 2б), описанной выше. При этом сохраняются недостатки, определяемые сложностью технического решения, и возможности возникновения дополнительной погрешности, вызванной рассогласованием управления волоконного фазомодулятора и синтезатором частот.

Итак, ЛИС с системой ФАПЧ на основе АЦП и синтезатора частот (генератора, управляемым кодом) 14, позволяет осуществить частотно-цифровое преобразование $\Delta f(\Delta l_y) - \Delta N_{_{BbX}}$ при измерении перемещений Δl_y .

Хорошими характеристиками для использования в данных ЛИС обладает микросхема ADF5610 (пр-во Analog Devices, США), представляющая собой 24-разрядный синтезатор частоты с ФАПЧ со встроенным ГУН с возможностью генерации сигнала в диапазоне от 55 до 15000 МГц. Для настройки выходного сигнала микросхема содержит 24-разрядный модуль настройки частоты, что позволяет генерировать сигнал с дискретным шагом в 3 Гц [12].

Рис. 5. Графики, поясняющие создание импульсных ступенчатых функций

2. ЛИС допускового контроля. Одна из особенностей АО гетеродинных ЛИС заключается в реализации возможности допускового контроля. Наиболее подходит для этого рассмотренная выше ЛИС с системой ФАПЧ и частотно-цифровым преобразованием, т.к. позволяет определять текущее положение отклонения от прямолинейности $\Delta I_{y'}$ реализуя абсолютный отсчет.

Ранее возможность допускового контроля в ЛИС была предложена, основываясь прежде всего на управлении значением пространственного периода *I_{nn}* и фазового детектора с отрицательной крутизной [11, 9].

Однако к настоящему времени в связи с существенным возрастанием степени интеграции интегральных схем, в т.ч. на ПЛИС, позволяющих реализовать прежде большие измерительные системы в нескольких микросхемах, значительно упростилась возможность частотно-цифрового преобразования $\Delta f(\Delta I_y) - \Delta N_{\rm вых}$.

Итак, о́дин N_1 или два N_2 , N_3 цифровых кода (числа), соответствующих положению на одной l или внутри двух $l_{b'}$ l_c пространственно-чувствительных координат и формированием граничного отклонения от прямолинейности или поля допуска [l_b;l_a] нужного значения (рис. 5). Это эквивалентно созданию единичных импульсных ступенчатых функций преобразования (функций Хэвисайда) $F(l_a) = 1(l-l_a)$ лизирующими импульсными перепадами «0» -> «1» (или наоборот) при прохождении через них. Использование подобных импульсных перепадов подобно реализации светофорной сигнализации для пространственно-чувствительных координат: «зеленый – красный» для l_a или «зеленый – желтый – красный» для поля допуска $[l_{b'}, l_c]$.

3. Импульсная ЛИС. Для ЛИС, описанных выше, диапазон измерения обычно не превосходит 1 — 3 мм. Для его увеличения, а также повышения разрешающей способности была разработана импульсная ЛИС (рис. 4а). В ней используется дифракции света в режиме Брэгта на коротком цуге УЗВ, «окне дифракции», пробегающем через АО модулятор, и измерение фазового сдвига в импульсном режиме. Работа импульсной ЛИС может быть в двух режимах: непрерывном или импульсном режиме лазера 1 с электрической или оптической синхро-

74

низацией измерений соответственно, а физические вопросы подобных режимов работы ЛИС рассмотрены в [13-16].

Итак, как и ранее, перекатывающаяся по исследуемой поверхности 4 каретка 3 с триппель-призмой 2 смещает на Δl_y отраженный луч лазера 1 (рис. 4а, б).

Оптическая схема импульсной ЛИС может быть реализована на отдельных оптических, волоконноили интегрально-оптических элементах, а в ее основе реализован интерферометр Маха-Цендера с двумя плечами:

— опорное плечо: светоделитель 15 \rightarrow коллиматор 16 \rightarrow зеркало 17 \rightarrow светоделитель 18 \rightarrow фотоприемник 8;

— измерительное плечо: светоделитель 15 \rightarrow «окно дифракции» в АО модуляторе \rightarrow светоделитель 18 \rightarrow фотоприемник 8.

В АО модуляторе 5 по сигналу от генератора 6 и формирователя импульсов 19, включающего волоконный фазомодулятор, возбуждается бегущая УЗВ в виде короткого цуга. В момент его пробегания через лазерный луч измерительного плеча формируется +1 порядок дифрагирующего света под углом Брэгга $\Theta_{_{b'}}$ следующий на фотоприемник 8, где интерферирует с оптическим потоком, прошедшим по опорному плечу интерферометра Маха-Цендера. Для дифрагирующего света цуг УЗВ выполняет роль светоделительной грани с центром АО взаимодействия. В результате интерференции двух оптических потоков на выходе фотоприемника 8 формируется импульсный электрический сигнал (рис. 6), подаваемый на вход измерительной схемы 20. В определенный момент измеряется фазовый сдвиг $\Delta \phi(\Delta l_{\perp})$ этого сигнала относительно опорного электрического сигнала от генератора 6.

Смещения лазерного луча Δl_y приводят для измерений в каждом цикле к смещению центра АО взаимодействия и от интерференции оптических потоков опорного и измерительного плеч к появлению соответствующего дополнительного фазового набега $\delta \varphi(\Delta l_y)$.

В результате на выходе измерительной схемы 20 вырабатывается цифровой сигнал рассогласования ΔN_{вых}, поступающий на формирователь импульсов 19 (и встроенный в него волоконный фазомодулятор) для компенсации вышеуказанного фазового набега δφ(Δl_y) за счет изменения времени старта (фазы сигнала) цуга УЗВ, его пространственного положения в АО модуляторе 5 и центра АО взаимодействия соответственно.

Таким образом, за счет изменения времени старта (фазы сигнала) каждого цуга УЗВ центр АО взаимодействия не меняется, чтобы компенсировать фазовый набег $\delta \varphi(\Delta I_y) = 0$, обеспечивая неизменность фазового сдвига $\Delta \varphi(\Delta I_y) = \text{const.}$ Такой алгоритм работы подобен коррекции смещения светоделительной грани интерферометра Маха – Цендера для компенсации смещений лазерного луча ΔI_y . Временной интервал (фаза сигнала) в цифровом виде, соответствующий старту цуга УЗВ, является выходным сигналом — $N_{\text{вых}}$. Как видно, смещения ΔI_y в итоге компенсируются пространственным смещением цуга УЗВ по фазовому набегу, кратному длине волны света.

В соответствии с ходом оптических лучей в АО модуляторе 5 (рис. 4б) выражение для фазового сдвига $\Delta \phi(\Delta l_u)$ можно записать:

$$\Delta \varphi(\Delta l_y) = \frac{2\pi (l_{ac} - l_{Bc})}{\lambda} . \tag{12}$$

Рис. 6. Импульсный сигнал, полученный от интерференции света дифрагированного на коротком цуге в АО модуляторе с опорным оптическим потоком [14]

Рис. 7. Зависимости угла Брэгга от частоты (а) [14] и «углового» коэффициента k_a от угла Брэгга Θ_b в диапазоне от 0° до 75° (б)

Значение l_{ac} найдем через соотношение $\frac{\Delta l_y}{l_{ac}} = \sin(\alpha_n + \alpha_g)$ (рис. 4б), которое с учетом того, что $\alpha_{p} + \alpha_{q} = 2\Theta_{p}$ принимает вид

$$I_{ac} = \frac{\Delta I_y}{\sin(\alpha_n + \alpha_g)} = \Delta I_y \cos ec(2\Theta_b).$$
(13)

Также через соотношение $\frac{\Delta l_y}{l_{bc}} = tg(2\Theta_b)$ (рис. 4б) определим и значение $l_{_{BC}}$:

$$l_{BC} = \Delta l_{v} ctg(2\Theta_{b}) . \tag{14}$$

Тогда, с учетом уравнений (13) и (14), выражение (12) примет следующий вид:

$$\Delta \varphi(\Delta I_y) = \frac{2\pi \Delta I_y}{\lambda} \left[\cos ec(2\Theta_b) - ctg(2\Theta_b) \right] = \\ = \frac{2\pi \Delta I_y}{\lambda} \cdot \frac{1 - \cos(2\Theta_b)}{\sin(2\Theta_b)},$$
(15)

которое, учетом известного равенства С ${1-\cos\gamma\over\sin\gamma}=tg\,{\gamma\over2}$, запишется

$$\Delta \varphi(\Delta l_y) = \frac{2\pi \Delta l_y}{\lambda} \cdot tg\Theta_b = k_u \frac{2\pi \Delta l_y}{\lambda}, \quad (16)$$

где $k_{\rm b} = tg\Theta_{\rm b}$ — «угловой» коэффициент.

Частотная зависимость угла Брэгга $\Theta_b(f)$ имеет нелинейный характер и её можно представить тремя графиками (рис. 7а).

График 1 соответствует изотропной дифракции (n_i=n_d), а графики 2 и 3 — анизотропной дифракции для двух вариантов соотношений поляризации падающего и дифрагированного света $(n_i < n_d)$ и $(n_i > n_d)$, соответственно [14].

Из рис. 7а видно, что при анизотропной дифракции света углы Брэгга достигают существенно больших значений вплоть до ±90° при меньших частотах, чем при изотропной дифракции. И этим предпочтительней для применения в данных ЛИС.

В [14] еще в начале 90-х годов XX века были рассчитаны и экспериментально определены значения пределов чувствительности по фазе составившие значения: λ/300 и λ/45 соответственно. С учетом технологического прогресса и появления за последние более 25 лет более чувствительных и менее шумящих фотоприемников можно предположить, что к настоящему времени достигнутые ранее значения могут быть улучшены, как минимум, до 3 раз и составить ≈λ/900 и λ/135 (≈0,005 мкм) соответственно.

Кроме того, в [14] было описано введение дополнительного АО модулятора в опорный канал с частотой модуляции f_{op}, близкой к частоте модуляции АО модулятора в измерительном канале f_{usm} : $f_{on} \approx f_{usm}$. Целесообразность такого варианта обусловлена необходимостью уменьшения разностной частоты до значения $\Delta f = f_{00} - f_{13M}$ и снижения частотных требований ко входным каскадам оптоэлектронного канала импульсной ЛИС.

Итак, разработка импульсной ЛИС создает предпосылки решения задачи в достижении сопоставимых значений разрешающих способностей в направлениях всех трех осей X, Y и Z: $\Delta_x \approx \Delta_v \approx \Delta_z$.

Заключение.

1. Создание ЦФП на основе волоконного фазомодулятора и ЦАП и введение его в контуры ФАПФ и ФАПЧ ЛИС дает возможность реализовать нулевой метод измерения входного фазового сдвига $\Delta \varphi(\Delta l_{y})$. При его полной компенсации пространственный период равен длине УЗВ $l_{nn} = \Lambda$, для значений которых 200 мкм и 10,3 мкм и 14-разрядном ЦФП обеспечивается разрешающая способность ≈12 нм и 0,6 нм при использовании в АО модуляторе воды и кристалла ТеО, соответственно. В связи с тем, что разрешающая способность в продольном направлении к лазерному лучу (вдоль оси OX) достигает уровня ≈0,2 ... 0,6 нм, поставленная цель равенства разрешающих способностей в трех ортогональных направлениях $\Delta l_v \approx \Delta l_u \approx \Delta l_u$ достижима для АО модуляторов на основе кристалла ТеО,.

2. Осуществление в ЛИС с системой ФАПЧ частотно-цифрового преобразования $\Delta f(\Delta l_y) - \Delta N_{\scriptscriptstyle Bblx}$ обусловливает необходимость одновременного изменения частоты и фазы на выходах ГУК и ЦФП, усложняя схему и внося дополнительную погрешность от их возможного рассогласования.

3. Импульсная ЛИС намного сложней так называемых «непрерывных» ЛИС и не позволяет достичь весомого преимущества по разрешающей способности, достигая значения ≈5 нм. Повышение чувствительности обусловливает использование твердотельного АО модулятора с анизотропной дифракцией света с достижением больших углов дифракции света при меньших частотах АО модуляции.

Библиографический список

1. Яковлев Н. А. Построение лазерных систем для измерения перемещения по трем координатам на основе акустооптического преобразования измерительной информации: дис. ... канд. техн. наук. М., 1991. 235 с.

2. А. с. 1696851 СССР, МПК G 01 В 9/02. Интерферометр для измерения отклонений от плоскостности / Базыкин С. Н., Базыкина Н. И., Капезин С. В., Телешевский В. И., Яковлев Н. А. № 4710084/28; заявл. 26.06.89; опубл. 07.12.89, Бюл. № 45.

3. А. с. 1765691 СССР, МПК G 01 В 21/20. Устройство для измерения отклонений от прямолинейности / Леун Е. В., Коренев М. С. № 96103210/28; заявл. 10.02.96; опубл. 10.08.97, Бюл. № 22.

4. Пат. 2523780 Российская Федерация, МПК G 01 В 21/00. Акустооптический способ измерения смещений / Пичхадзе К. М., Мартынов М. Б., Сысоев В. К., Леун Е. В. № 2013104694/28; заявл. 06.02.13; опубл. 20.07.14, Бюл. № 20.

5. Игнатов С. А. Повышение разрешающей способности лазерных измерительных систем для контроля оборудования ГПС методом акустооптоэлектронной обработки информации: дис. ... канд. техн. наук. М., 1987. 231 с.

6. Леун Е. В. Особенности схемотехники акустооптических лазерных систем для измерения перемещений с фазоцифровым преобразованием // Технология машиностроения. 2002. № 5. C. 33-40.

7. Пат. 2213935 Российская Федерация, МПК G 01 B 21/00. Акустооптическое устройство измерения смещений / Леун Е.В. № 2002114645/28; заявл. 04.06.02; опубл. 10.10.03.

8. Иванов В. В. Развитие методов низкокогерентной волоконно-оптической интерферометрии: дис. ... канд. техн. наук. Н. Новгород, 2005. 154 с.

9. Леун Е. В. Исследование адаптивной волоконной измерительной головки для бесконтактного измерения отклонений размеров деталей на основе управляемого акустооптоэлектронной обратной связи: дис. ... канд. техн. наук. М., 1994. 223 с.

76

приборостроение, метрология и информационно-измерительные приборы и системы

10. Бутусов М. М., Галкин С. Л., Оробинский С. П. Волоконная оптика и приборостроение. Л.: Машиностроение, 1987. 328 с.

11. Шахгильдян В. В., Ляховкин А. А. Системы фазовой автоподстройки частоты. М.: Связь, 1972. 446 с.

 Широкополосный синтезатор с ФАПЧ со встроенным ГУН ADF5610 // Электроника: Наука, технология, бизнес.
 2019. № 1 (182). С. 117.

13. Балакший В. И., Мартынова М. В., Румянцев А. А. Дифракция света на акустическом импульсе // Оптика и спектроскопия. 1998. Т. 84, № 5. С. 860—866.

14. Румянцев А. А. Акустооптические датчики волнового фронта световой волны: дис. ... канд. физ.-мат. наук. СПб., 1994. 168 с.

15. Вовк Ю. М., Затолокин В. Н., Рудаков И. Б. [и др.]. Акустооптический сканер на основе бегущей акустической ЛЧМ-линзы // Автометрия. 1992. № 1. С. 54-62.

 Твердохлеб П. Е., Штейнберг И. Ш., Щепеткин Ю. А. Способ гетеродинного детектирования импульсных световых сигналов // Автометрия. 1999. № 5. С. 41-51. **ЛЕУН Евгений Владимирович,** кандидат технических наук, ведущий инженер АО «НПО Лавочкина». SPIN-код: 6060-8056 AuthorID (РИНЦ): 367560

AuthorID (SCOPUS): 57200722184

Адрес для переписки: stankin1999@mail.ru

Для цитирования

Леун Е. В. Совершенствование методов и средств контроля отклонений от прямолинейности на основе акустооптических гетеродинных лазерных измерительных систем // Омский научный вестник. 2019. № 4 (166). С. 71-77. DOI: 10.25206/1813-8225-2019-166-71-77.

Статья поступила в редакцию 18.06.2019 г. © Е. В. Леун