Т. В. КОВАЛЕВА О. О. КОМЯКОВА Н. В. ПАШКОВА

Омский государственный университет путей сообщения, г. Омск

РЕЗОНАНСНЫЕ ЯВЛЕНИЯ В ТЯГОВОЙ СЕТИ ПЕРЕМЕННОГО ТОКА

В статье приведен анализ электромагнитных процессов в тяговой сети переменного тока электрических железных дорог с учетом ее распределенных параметров, обусловливающих волновые процессы, которые являются одной из причин возникновения резонансных явлений. Резонансы в тяговой сети негативно влияют на качество напряжения и тока, усиливают мешающие влияния на смежные устройства и могут вызвать повреждения электрооборудования. Приведенные результаты расчета минимальных резонансных длин участков тяговой сети и коэффициентов кратности напряжения и токов в зависимости от частоты питающего напряжения позволяют оценить влияние длины и параметров линии, типа нагрузки на наличие резонансов.

Ключевые слова: резонансные явления, электромагнитные процессы, тяговая сеть, цепь с распределенными параметрами, переменный ток, электрические железные дороги.

Наличие резонансных явлений в системе тягового электроснабжения переменного тока является одним из факторов, негативно влияющим на работу объектов энергетической инфраструктуры.

Тяговая сеть переменного тока является электрической цепью с распределенными и сосредоточенными параметрами [1, 2]. Волновые процессы, возникающие в сети, вызывают в местах подключения электроподвижного состава (ЭПС) перенапряжения, обусловленные резонансом напряжений, и являются причиной возникновения аварийных ситуаций в системе тягового электроснабжения [3, 4].

Наряду с резонансом напряжений в тяговой сети возникают резонансы токов на частоте какой-либо гармоники из спектра напряжения сети, которые могут приводить к выходу из строя конденсаторов фильтрокомпенсирующих устройств [5, 6]. Кроме того, резонансные явления в тяговой сети влияют на уровень помех в рельсовых цепях на частотах больше 1кГц [7].

Реальная тяговая сеть является линией с потерями и имеет конечное значение входного сопротивления $\underline{Z}_{\text{вк}}$, которое зависит от ее длины *l*. Зависимость $\underline{Z}_{\text{вк}}(l)$ имеет максимумы и минимумы. Минимум $\underline{Z}_{\text{вк}}(l)$ соответствует резонансу напряжений, максимум — резонансу токов [8]. Каждый из резонансов возникает при определенной длине линии. В этом случае в конце линии значение напряжения или тока может превышать их значения в начале линии. Резонансная длина для каждой гармоники различная.

Для исследования резонансных явлений в тяговой сети, как правило, используют эквивалентную расчетную схему, в которой ЭПС заменяется источником гармоник тока. К этому источнику с одной стороны подключаются сопротивления тяговой подстанции и системы внешнего электроснабжения, а с другой — сопротивление фильтрокомпенсирующего устройства (ФКУ) [9].

При анализе электромагнитных процессов с использованием такой схемы замещения эквивалентное входное сопротивление представляется в виде параллельного соединения входных сопротивлений с двух сторон от ЭПС. Это справедливо для работы тяговой сети на низких частотах (до 500 Гц), при которых система рассматривается как цепь с сосредоточенными параметрами. Однако в области высокочастотных гармоник необходимо учитывать распределение параметров вдоль длины тяговой сети.

Приведенный в [9] расчет эквивалентного входного сопротивления не позволяет в полной мере оценить реальные электромагнитные процессы в цепи с распределенными параметрами, в частности, наличие отраженных волн.

В данной работе предлагается схема замещения тяговой сети, приведенная на рис. 1, в которой в качестве нагрузки используются сопротивления ЭПС и фильтрокомпенсирующего устройства, а источником гармоник ЭДС является тяговая подстанция.

В качестве первичных параметров тяговой сети $r_{\rm orc'}$ $g_{\rm orc'}$ $L_{\rm orc'}$ $C_{\rm orc}$ в расчетах использованы экспериментально полученные значения для двух различных участков железной дороги переменного тока (табл. 1). Поперечная проводимость $g_{\rm orc}$ является частотно-зависимым параметром. Однако для линий

Рис. 1. Схема замещения участка тяговой сети

Первичные и вторичные параметры участков тяговой сети переменного тока на основной частоте

Номер расчетного участка тяговой сети	r _{0rc'} Ом	L _{0тс} ×10 ^{−3} , Гн/км	$C_{_{0\mathrm{TC}}} imes 10^{-9}$, Ф/км	$\frac{Z_{\mu'}}{O_M}$	χ, KM ⁻¹	
1	0,133	0,62	29	153,73 — <i>j</i> 47,48	$4,33 \times 10^{-4} + j1,4 \times 10^{-3}$	
2	0,21	1,33	17	287,92 — <i>j</i> 68,28	$3,65 \times 10^{-4} + j1,54 \times 10^{-3}$	

напряжением меньше 330 кВ ее значение принимается равным нулю [10].

Входное сопротивление тяговой сети зависит от частоты гармоник питающего напряжения и определяется по выражению [11]

$$\underline{Z}_{\scriptscriptstyle BX} = \underline{Z}_{\scriptscriptstyle B} \frac{1 + \underline{\rho} e^{-2\underline{\gamma} l}}{1 - \rho e^{-2\underline{\gamma} l}},\tag{1}$$

где $Z_{\rm p}$ — волновое сопротивление; $\gamma = \alpha + j\beta$ — коэффициент распространения; α — коэффициент затухания; β — коэффициент фазы; $\underline{\rho} = \frac{\underline{Z}_{\text{H}} - \underline{Z}_{\text{B}}}{\underline{Z}_{\text{H}} + \underline{Z}_{\text{B}}1} = \rho e^{j\psi}$ — коэффициент отражения; \underline{Z}_{H} — сопротивление нагрузки.

Условие минимума и максимума зависит от составляющей $e^{-2\underline{\gamma}l}$.

Выражение (1) преобразуем к следующему виду:

$$\underline{Z}_{\scriptscriptstyle \rm BX} = \underline{Z}_{\scriptscriptstyle \rm B} \frac{1 + \rho e^{-2\alpha l} e^{-j(2\beta l - \psi)}}{1 - \rho e^{-2\alpha l} e^{-j(2\beta l - \psi)}}, \qquad (2)$$

Из выражения (2) следует, что $\underline{Z}_{_{\rm BX}}$ принимает минимальное и максимальное значение при $e^{-j(2\beta l-\psi)}$, равном соответственно -1 и 1. Этим значениям соответствует аргумент функции:

$$2\beta I_{\rm p} - \psi = \pm n\pi$$
 при $e^{-j(2\beta I_{\rm p} - \psi)} = -1$ ($n = 1, 3, 5...$);

 $2\beta l_{\rm p}-\psi=\pm 2n\pi$ при $e^{-j\left(2\beta l_{\rm p}-\psi
ight)}=-1$ $\left(n=0,1,2...
ight)$,

где l_p — резонансная длина линии на определенной частоте.

Расчетные зависимости входного сопротивления с первичными параметрами второго участка тяговой сети при различной протяженности (38 км, 50 км) и типе нагрузки (ЭПС; ЭПС, ФКУ) от частоты гармоники питающего напряжения приведены на рис. 2.

Анализ полученных зависимостей показывает наличие локальных минимумов и максимумов.

Например, первый максимум частотной характеристики входного сопротивления, соответствующий резонансу токов при типе нагрузки ЭПС, зафиксирован на частоте 350 Гц, а при подключении дополнительно ФКУ этот максимум сдвигается вправо и соответствует частоте 750 Гц. Таким образом, тип нагрузки тяговой сети определяет смещение локальных максимумов и минимумов входного сопротивления.

Локальным минимумам и максимумам входного сопротивления соответствуют резонансные длины

 $I_{\rm ph}$ и $I_{\rm pr}$: $I_{\rm phmin} = \frac{\pi + \psi}{2\beta}$ — минимальная длина линии при резонансе напряжений;

а — длина участка тяговой сети 50 км; б — 38 км

 $I_{\rm prmin} = rac{\Psi}{2\beta}$ — минимальная длина линии при ре-

зонансе токов.

Сравнение характеристик, приведенных на рис. 2а и рис. 2б, показывает, что при одинаковом типе нагрузки тяговой сети и уменьшени
и $l_{\rm ph\ min},\ l_{\rm pt\ min}$ максимумы и минимумы входного сопротивления смещаются в сторону высоких частот.

Зависимость минимальных резонансных длин второго участка тяговой сети с параметрами, приведенными в табл. 1, от частоты гармоник питающего напряжения при различной нагрузке приведена на рис. З.

Напряжение и ток в любой точке линии определяются по известным соотношениям:

ЭЛЕКТРОТЕХНИКА

34

Рис. 3. Частотная зависимость минимальных резонансных длин участка тяговой сети при различном типе нагрузки

Рис. 4. Частотная зависимость коэффициента кратности резонанса напряжений

Преобразуем систему (3) с использованием формул Эйлера, подставив в первое и второе уравнения $x = l_{_{\rm pH\ min}}$ и $x = l_{_{\rm pT\ min}}$ соответственно, и получим выражения для определения кратности выходного и входного напряжения и тока:

c

$$\begin{cases} \dot{U}_{2} = \dot{U}_{1} e^{-(\alpha + j\beta)l_{\text{pr}\min}} \frac{1 - \rho e^{-2\underline{\gamma}l_{\text{pr}\min}}}{1 + \rho e^{-2\underline{\gamma}l_{\text{pr}\min}}};\\ \dot{I}_{2} = \dot{I}_{1} e^{-(\alpha + j\beta)l_{\text{pr}\min}} \frac{1 + \rho e^{-2\underline{\gamma}l_{\text{pr}\min}}}{1 - \rho e^{-2\underline{\gamma}l_{\text{pr}\min}}}. \end{cases}$$
(4)

Оценить возможность появления резонансов с повышенными напряжениями и токами позволяют следующие неравенства:

$$\begin{cases} \eta_{\rm pH} = \left| e^{-\alpha l_{\rm prmin}} \frac{1 - \underline{\rho} e^{-2 l_{\rm prmin}}}{1 + \underline{\rho} e^{-2 l_{\rm prmin}}} \right| >> 1; \\ \eta_{\rm pr} = \left| e^{-\alpha l_{\rm prmin}} \frac{1 + \underline{\rho} e^{-2 l_{\rm prmin}}}{1 - \underline{\rho} e^{-2 l_{\rm prmin}}} \right| >> 1. \end{cases}$$
(5)

Коэффициенты кратности $\eta_{_{\mathrm{pH}^{\prime}}}\,\eta_{_{\mathrm{pT}}}$ определяют вероятность возникновения соответственно резонансов напряжения и токов на определенной частоте.

Неравенства (5) выполняются, когда эффект наложения волн напряжения и тока преобладает над их затуханием.

В тяговой сети, где согласование нагрузки отсутствует ($\rho \neq 0$) , т. е. имеют место отраженные волны, условия (5) могут выполняться, когда расстояние между тяговой подстанцией и нагрузкой близко к значениям $x = l_{\text{рн min}}$ и $x = l_{\text{рт min}}$ Кроме того, выполнение условий (5) возможно, когда расстояние

Таблица 2

Номер гармоники v	Номер расчетного участка тяговой сети	Тип нагрузки	Коэффициент затухания α×10 ⁻⁴ , Нп/км	$l_{_{ m ph\ min,}}$ км	l _{pt min} , KM	$\eta_{_{\rm pH}}$	$\eta_{_{\rm TH}}$
11		ЭПС, ФКУ	4.540	179	72	12,33	36,84
	I	ЭПС	4,340	123	16	12,67	38,05
	2	ЭПС, ФКУ	2.752	174	78	14,79	35,43
	Z	ЭПС	3,733	122	26	11,9	22,31
25	1	ЭПС, ФКУ	4 549	65	18	36,12	128,4
		ЭПС	4,340	50	3	33,56	119,51
	2	ЭПС, ФКУ	2 754	66	24	32,74	55,95
		ЭПС	3,734	47	5	32,05	56,19
31	1	ЭПС, ФКУ	4 5 4 9	50	12	46,93	259,79
		ЭПС	4,340	40	2	46,19	206,64
	2	ЭПС, ФКУ	0.754	51	17	47,66	69,62
		ЭПС	3,734	37	3	34,97	39,42
39	1	ЭПС, ФКУ	4.540	38	8	61,16	71,34
	1	ЭПС	4,348	32	1	34,77	60,07
	2	ЭПС, ФКУ	2.754	39	12	42,09	58,67
		ЭПС	3,734	29	2	53,87	69,01

Результаты расчета участков тяговой сети переменного тока

ЭЛЕКТРОТЕХНИК

между двумя узлами тяговой сети при аварийном режиме близко к значениям $x = l_{\rm pH \ min}$ и $x = l_{\rm pT \ min}$. В этом случае возникающие в одном узле волны могут вызвать перенапряжения или увеличение тока в соседнем узле.

Для оценки влияния длины участка тяговой сети, параметров линии, типа нагрузки (ФКУ, ЭПС) на наличие резонансов были проведены расчеты минимальных резонансных длин участков тяговой сети и коэффициентов кратности $\eta_{\text{рн}}$, $\eta_{\text{рт}}$ при различных частотах. Результаты расчета для различных гармоник приведены в табл. 2.

Параметры участков тяговой сети, в том числе коэффициент затухания α , имеют небольшие различия, поэтому значение $l_{\text{pH}\mbox{min}}$, $l_{\text{pT}\mbox{min}}$ и η_{pH} , η_{pT} для двух рассмотренных участков в результате расчета получились практически одинаковыми.

Зависимость коэффициента кратности резонанса напряжений второго участка тяговой сети (тип нагрузки — ЭПС) различной протяженности (38 км, 50 км) от частоты гармоник питающего напряжения приведена на рис. 4.

Анализ приведенных зависимостей на рис. 4. указывает, что при одинаковой нагрузке и параметрах тяговой сети с уменьшением $I_{\rm ph\,min}$, вероятность возникновения резонанса напряжений сдвигается в сторону высоких частот.

Приведенная методика анализа электромагнитных процессов с учетом распределенного характера параметров тяговой сети позволяет исследовать наличие резонансных явлений и оценить их влияние на работу ЭПС, смежных устройств связи, автоматики и телемеханики, а также использовать при проектировании и установке фильтрокомпенсирующих устройств.

Библиографический список

1. Довгун В. П., Егоров Д. Э., Важенина И. Г., Синяговский А. Ф. Регулируемые фильтрокомпенсирующие устройства для систем тягового электроснабжения // Омский научный вестник. 2018. № 5 (161). С. 45 – 50. DOI: 10.25206/1813-8225-2018-161-45-50.

2. Ковалева Т. В., Комякова О. О., Пашкова Н. В. Зависимость волновых процессов в тяговой сети переменного тока от параметров системы электроснабжения // Омский научный вестник. 2019. № 3 (165). С. 23–27. DOI: 10.25206/1813-8225-2019-165-23-27.

3. Кучумов В. А., Ермоленко Д. В. Показатели качества электроэнергии на токоприемнике и взаимодействие ЭПС с системой тягового электроснабжения переменного тока // Вестник научно-исследовательского института железнодорожного транспорта. 1997. № 2. С. 11 – 16.

4. Довгун В. П., Сташков И. А. Компенсация резонансных перенапряжений на токоприемнике ЭПС в системе тягового электроснабжения переменного тока // Современные технологии. Системный анализ. Моделирование. 2015. № 1 (45). С. 134–138. 5. Сиромаха С. С., Осипов Д. С., Черемисин В. Т. О необходимости учета режима работы и импеданса системы электроснабжения при моделировании резонанса токов // Современные проблемы науки и образования. 2014. № 5. 10 с.

6. Минина А. А., Пантелеев В. И., Платонова Е. В. Обеспечение качества электроэнергии в системах тягового электроснабжения переменного тока // Журнал Сибирского федерального университета. Техника и технологии. Т. 5 № 3. 2012. С. 319–326.

7. Бялонь А., Адамски Д., Фурман Ю. Влияние резонансов в контактной сети на допускаемые параметры помех // Електрифікація транспорту. № 11. 2016. С. 116—121.

8. Зажирко В. Н. Некоторые резонансные свойства однородной двухпроводной линии в несинусоидальном периодическом режиме // Улучшение качества и снижение потерь электрической энергии в системах электроснабжения железных дорог: межвуз. темат. сб. науч. тр. / Омская гос. акад. путей сообщения. Омск, 1995. С. 35–40.

9. Сташков И. А. Многофункциональные фильтрокомпенсирующие устройства для повышения качества электроэнергии в электроэнергетических системах с тяговой нагрузкой: автореф. дис. ... канд. техн. наук. Красноярск, 2016. 21 с.

 Ковалева Т. В., Пашкова Н. В. Исследование волновых процессов в контактной сети и линиях электропередачи // Известия Транссиба. 2015. № 2 (22). С. 71-79.

11. Бессонов Л. А. Теоретические основы электротехники. Электрические цепи. 12 изд., испр. и доп. М.: Юрайт, 2016. 701 с.

КОВАЛЕВА Татьяна Владимировна, кандидат технических наук, доцент (Россия), доцент кафедры «Теоретическая электротехника». SPIN-код: 7545-0724

AuthorID (РИНЦ): 650721

Адрес для переписки: tatevgeniy@list.ru

КОМЯКОВА Ольга Олеговна, кандидат технических наук, доцент (Россия), доцент кафедры «Теоретическая электротехника».

SPIN-код: 1929-6266

AuthorID (РИНЦ): 517522

Адрес для переписки: komyakovaoo@mail.ru

ПАШКОВА Наталья Викторовна, кандидат технических наук, доцент (Россия), доцент кафедры «Теоретическая электротехника». SPIN-код: 9137-5016 AuthorID (РИНЦ): 650714

Адрес для переписки: nvp78@mail.ru

Для цитирования

Ковалева Т. В., Комякова О. О., Пашкова Н. В. Резонансные явления в тяговой сети переменного тока // Омский научный вестник. 2020. № 4 (172). С. 32—35. DOI: 10.25206/1813-8225-2020-172-32-35.

Статья поступила в редакцию 06.05.2020 г. © Т. В. Ковалева, О. О. Комякова, Н. В. Пашкова