МАШИНОСТРОЕНИЕ И МАШИНОВЕДЕНИЕ

УДК. 620.178.73 DOI: 10.25206/1813-8225-2021-179-5-14

Д. И. ЧЕРНЯВСКИЙ Д. Д. ЧЕРНЯВСКИЙ

Омский государственный технический университет, г. Омск

ИССЛЕДОВАНИЕ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК УДАРА ДВУХ ТВЕРДЫХ ДЕФОРМИРУЕМЫХ ТЕЛ ПРИ СКОРОСТИ УДАРА ДО 100 м/с

В работе проводится анализ динамических зависимостей между силой удара и глубиной внедрения индентора в преграду. Индентором является стальной закаленный шар. Преграда изготовлена в виде стержня из различных видов стали, дюралюминия, алюминия и свинца. В результате оцифровки графиков зависимостей получены интерполяционные формулы для различных фаз удара (первая фаза удара — сжатие; вторая фаза удара — разгрузка). В ходе проведенного анализа интерполяционных формул получены абсолютные и относительные данные о преобразовании первоначальной кинетической энергии индентора в распределение энергий после удара: величина кинетической энергии индентора после удара, величины энергии упругих и пластических деформаций, а также энергии ударных волн.

Полученные результаты можно использовать для проектирования ударных машин при скорости удара индентора о преграду до 100 м/с.

Ключевые слова: механический удар, твердое деформируемое тело, упругие и пластические деформации, энергия ударных волн, глубина внедрения индентора, прочность.

Введение. В настоящее время материаловедение достигло значительных успехов. Появились новые материалы и сплавы, имеющие ранее недостижимые характеристики прочности, долговечности, температурной устойчивости и т.д. Однако основными конструкционными материалами, применяемыми в современном народном хозяйстве, остаются разнообразные по своим техническим характеристикам сплавы железа и углерода (сталь и чугун). Это объясняется высоким процентным содержанием данных элементов в земной коре, относительно простыми и дешевыми технологиями изготовления разнообразных стальных и чугунных конструкций, а также высокой прочностью данных материалов.

Практика показала, что до настоящего времени сталь является наиболее удобным и практичным

материалом для изготовления ударно взаимодействующих деталей и узлов машин. Как правило, основная часть ударных машин, применяющихся в различных отраслях промышленности, используют скорости соударения до 100 м/с. При таких скоростях удара деталей машин друг с другом, их форма и другие конструктивные размеры остаются практически неизменными, чем достигается долговечность работы данных ударных машин и устройств.

Среди значительного количества исследований, посвященных различным аспектам изучения динамики удара, необходимо выделить следующие основные публикации. Johnson K. L. [1] рассматривает контактную прочность материалов при их давлении друг на друга в статических и динамических усло-

Обозначения в формулах

Символы	Описание	Размер- ность
F	Контактная сила	Н
K _H	Коэффициент, величина которого зависит от формы и свойств материалов контактирующих тел	_
δ	Величина сближения контактирующих тел	М
E_1	Величина модуля упругости (модуль Юнга) для материала шара	Па
E_2	Величина модуля упругости (модуль Юнга) для материала стержня	Па
μ	Величина коэффициента Пуассона для материала шара	-
μ	Величина коэффициента Пуассона для материала стержня	-
R	Приведенный радиус кривизны	м
R_1	Радиус кривизны контактной поверхности для шара	м
R_2	Радиус кривизны контактной поверхности для торца стержня	М
F_{Gold5}	График дискретных экспериментальных данных для опыта № 5	-
F _{compress5}	График интерполяционной кривой (линия сжатия) для опыта № 5	-
$F_{_{Recov5}}$	График интерполяционной кривой (линия разгрузки) для опыта № 5	-
$A_{_{i m {\it A}oy {\it A}apa}}$	Кинетическая энергия шара перед ударом для і-го опыта	Дж
$A_{_{i\! m nocney,apa}}$	Кинетическая энергия отскока шара после удара для і-го опыта	Дж
$A_{_{i\mathrm{y}\mathrm{n}\mathrm{p}\mathrm{y}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{d}\mathrm{i}}}$	Энергия упругих деформаций шара и стержня для і-го опыта	Дж
$A_{_{i\!\Pi\!\Lambda\! m act}}$	Энергия пластических деформаций шара и стержня для і-го опыта	Дж
$A_{_{i\mathrm{BOAH}}}$	Энергия ударных волн в шаре и стержне для і-го опыта	Дж
$S_{_{\Delta OAC}}$	Площадь криволинейного треугольника ОАС, рис. 7	
$S_{_{\Delta BAC}}$	Площадь криволинейного треугольника ВАС, рис. 7	
a ₀ , a ₁ , a ₂	Показатели интерполяционной функции для фазы сжатия	
$b_{_{0'}} b_{_{1'}} b_{_{2}}$	Показатели интерполяционной функции для фазы разгрузки	

виях. Goldsmith W. [2], Stronge W. J. [3], Александров Е. В. и др. [4], Ророv V. L. [5] изучают основные разделы теории удара: центральный удар твердых деформируемых тел; удар твердых деформируемых тел в плоскости и в пространстве; численное моделирование ударного процесса, удар тел переменной жесткости и другие теории.

Основы контактной теории тел заложил Г. Герц [6]. Он изучал статическое давление двух упругих сфер друг на друга, а также вдавливание сферы в упругое полупространство. Давление сферы осуществлялось по нормали к поверхности второго тела без учета сил трения. Теория Герца стала фундаментом для математического описания удара различных тел.

Рассмотрим публикации, основанные на теории Герца и посвященные различным вариантам удара двух тел. Goldsmith W. и др. [7] проводили эксперименты по удару сфер о торцы стержней, изготовленных из различных материалов. Wu C. и др. [8] разработали модель расчета параметров косого удара сферы об упругое полупространство. Модель способна рассчитать параметры удара для упругих и упругопластических сфер при косом ударе. Thornton C. [9] выводит аналитическое решение для коэффициента восстановления через отношение скоростей удара тел. Vu-Quoc L. и др. [10] представляет упругопластическую модель зависимости нормальной силы и смещения для столкновения двух сфер. Li L. и др. [11] рассматривают теоретическую модель нормального контакта жесткой сферы и пластического полупространств, а также удар пластичного шара о твердое полупространство. Получены уравнения связи силы и смещения тел для статичного нагружения и уравнения расчета коэффициента восстановления для динамического случая. Labous L. и др. [12] изучают столкновение двух сфер с применением высокоскоростного видеоанализа. Авторы рассчитывают величины коэффициента восстановления для различных случаев. Gunes R. и др. [13] изучают удар сферы о пластину, изготовленную из металлокерамики. В статье приведены различные графики, связывающие различные параметры удара между собой. Christoforou R. и др. [14] исследуют удар сферы о пластины и оболочки. В статье приведены различные графики, связывающие ударную силу и время, а также и другие параметры удара.

В работе [15, 16] Чернявский Д. и др. рассматривают практическое применение теории удара для определения оптимальных параметров пневмоударников, применяемых для прокладки коммуникаций

ОМСКИЙ НАУЧНЫЙ ВЕСТНИК № 5 (179) 2021

в грунте; а также для забивки строительных свай в грунт.

Таким образом, можно отметить, что теоретическое и экспериментальное изучение проблем удара является важным направлением дальнейшего развития машиностроения.

Обозначения физических величин, принятых в данной статье, приведены в табл. 1.

Постановка задачи. В данной работе предлагается использовать уравнение Герца для описания ударного взаимодействия с учетом упругопластических деформаций при средних скоростях удара (до 100 м/с).

Классической теорией, описывающей статическое сжатие двух упругих тел, является теория Генриха Герца, полученная на основе электростатической аналогии [6].

Профили контактных поверхностей двух тел должны быть гладкими и непрерывными, т.е. описываться математическими уравнениями поверхностей второй степени. Вследствие выполнения данного условия напряжения, возникающие в телах, всегда имеют конечные величины. В тех случаях, когда индентор имеет форму клина, конуса или пирамиды, данное условие не выполняется. Рассмотрим применение теории Герца для точечного контакта двух тел.

В основе теории Герца находятся следующие допущения:

1. Материалы взаимодействующих тел однородны и изотропны.

2. Силы, приложенные к телам, формируют в зоне контакта только упругие деформации, зависящие от закона Гука.

3. Площадь контакта и объем контактной зоны малы по сравнению с размерами соприкасающихся тел.

4. Контактные силы нормальны к контактирующим поверхностям тел.

Уравнение Герца имеет следующий вид [6]

$$F = K_H \delta^{3/2}.$$
 (1)

Величина $K_{\!_H}$ определяется выражением:

$$K_{H} = \frac{4}{3}\sqrt{R} \frac{E_{1}E_{2}}{(1-\mu_{1}^{2})E_{1} + (1-\mu_{2}^{2})E_{2}}.$$
 (2)

Для реального контактного взаимодействия площадь контакта двух тел имеет форму эллипса и объем контактной зоны близок по своей форме к эллипсоиду. Для упрощения расчетов можно определять приведенную кривизну в плоскости наиболее плотного контакта тел, т.е. сделать допущение, что эллипс и эллипсоид преобразуются в круг и сферу соответственно.

частично отожженной инструментальной стали [7]. Индентор: стальной шарик диаметром 12,7 мм, HRC 60-64.

Преграда: стальной стержень диаметром 12,7 мм, HRC 17-32

Тогда для сферических контактных поверхностей запишем выражение

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}.$$
 (3)

Применим уравнения Герца для описания упругопластического удара.

Теория. Классической экспериментальной работой по изучению упругопластического удара является работа [7]. Экспериментальная установка представляла собой горизонтальное пневматическое устройство, изготовленное из латунной трубы длиной 0,9 м с внутренним диаметром 12,9 мм. На торце трубы была приварена пневматическая камера, в которую насосом подавался воздух с регулируемым давлением. На противоположном конце трубы точно по ее центру баллистически подвешивался мерный стержень Гопкинса в виде стержня с плоскими торцами длиной 84 см, изготовленный из различных марок стали. По сигналу оператора срабатывал быстродействующий клапан, выпуская из камеры сжатый воздух, который разгонял стальной шар весом 8,33 г с максимальной скоростью 90 м/с. Изменяя давление в пневматической камере можно было менять скорость шара. Шар наносил удар по торцу стержня, оставляя на нем кратер, глу-

Рис. 4. Статические и динамические зависимости сила — глубина внедрения для отожженной инструментальной стали [7]. Индентор: стальной шарик диаметром 12,7 мм, HRC 60-64. Преграда: дюралюминиевый (2024-Т4) стержень диаметром 12,7 мм, HB 74

Рис. 5. Статические и динамические зависимости сила — глубина внедрения для отожженной инструментальной стали [7]. Индентор: стальной шарик диаметром 12,7 мм, HRC 60-64. Преграда: алюминиевый (1100-F) стержень диаметром 12,7 мм, HB 24

8

диаметром 12,7 мм, HB 0,383

бина и диаметр которого измерялись профилометром. Процесс удара снимался высокоскоростной камерой, способной производить съемку с частотой 130 000 кадров в секунды. Начальная скорость шара и его скорость отскока после удара определялась с помощью высокоскоростной камеры.

На противоположной стороне стержня размещались тензометры, подключенные через потенциометрическую схему на запоминающий осциллограф. По осциллограмме строился график ударного импульса, который потом пересчитывался в диаграмму сила — сближение. На рис. 1—6 представлены диаграммы зависимостей сила — глубина внедрения при ударе стального шара о торец стального (дюралевого, алюминиевого и свинцового) стержня Гопкинса.

С помощью программы автоматизированного проектирования «Компас» авторами была проведена оцифровка всех двадцати шести вариантов соударения шара о стержень Гопкинса. Ось ординат диаграмм (ось δ) рис. 1-6 была разделена на отдельные отрезки с шагом 0,033 мм. Для каждого значения δ по линии соответствующей диаграммы определялась величина ударной силы F на оси абцисс. Далее полученные дискретные данные приводили к интерполяционной функции; т.е. к функции, которая наиболее полно подходит к дискретным точкам экспериментальных данных и удовлетворяет математическим условиям интерполяции. На рис. 7 приведен пример такой интерполяции для опыта № 5. Практика показала, что для получения достоверных данных необходимо использовать две интерполяционные функции: одна функция для процесса ударного сжатия шара и стержня и вторая функция для процесса ударной разгрузки шара и стержня. Результаты интерполяции экспериментальных графиков [7] приведены в табл. 2.

Для расчета распределения энергии в ходе удара, необходимо определить площади, отсекаемые кривыми графика, представленного на рис. 7.

Вначале необходимо рассмотреть процессы преобразования кинетической энергии в ходе ударного процесса. Полная энергия удара определяется кинетической энергией шара непосредственно перед ударом — $A_{igoygapa}$. После окончания удара энергия распределяется следующим образом: кинетическая энергия отскока шара после удара — $A_{inocneygapa'}$ энер-

Рис. 7. Пример построения интерполяционных кривых на основе опыта № 5

гия упругих деформаций шара и стержня — $A_{_{iynpyrge\phi'}}$ энергия пластических деформаций шара и стержня — $A_{_{inластве\phi'}}$ энергия ударных волн в шаре и стержне — $A_{_{iволн}}$. На рис. 7 энергия упругих деформаций шара и стержня — $A_{_{iynpyrge\phi}}$ определяется площадью криволинейного треугольника *BAC*. В свою очередь, общая энергия упругих и пластических деформаций шара и стержня определяется площадью криволинейного треугольника *OAC*. Таким образом, энергия пластических деформаций, формирующихся в ходе ударного процесса в зоне контакта шара и стержня, определяется выражением (4).

$$A_{innacmge} = S_{\Delta OAC} - S_{\Delta BAC}.$$
 (4)

Из условий проведения экспериментов [7] для каждого номера опыта известны кинетические

Таблица 2

Интерполяционные зависимости при ударе шара о торец стержня

Номер опыта	Скорость удара шара о стержень, м/с	Скорость отскока шара, м/с	Зависимость сила — глубина внедрения для первой половины удара (сжатие)	Зависимость сила — глубина внедрения для второй половины удара (разгрузка)		
Индентор: стальной шарик диаметром 12,7 мм, HRC 60-64 Преграда: стальной стержень диаметром 12,7 мм, HRC 60-64						
1	46,025	19,416	$F_{compress1} = 5,98 \cdot 10^{9} \cdot \delta^{1,42} - 116,96$	$F_{Recov1} = 1,66 \cdot 10^{13} \cdot \delta^{2,37} - 7,81 \cdot 10^{3}$		
2	46,147	20,452	$F_{compress2} = 6,15 \cdot 10^{9} \cdot \delta^{1,42} - 101,51$	$F_{Recov2} = 2,52 \cdot 10^{11} \cdot \delta^{1,85} - 1,43 \cdot 10^4$		
3	62,48	25,85	$F_{Compress3} = 7,4.10^9 \cdot \delta^{1,44} - 100,3$	$F_{Recov3} = 2,93 \cdot 10^{18} \cdot \delta^{3,91} - 6,9 \cdot 10^3$		
4	89,002	28,194	$F_{Compress4} = 1,68 \cdot 10^9 \cdot \delta^{1,26} - 1705$	$F_{Recov4} = 2,56 \cdot 10^{13} \cdot \delta^{2,5} - 2,34 \cdot 10^{4}$		
5	89,611	28,346	$F_{Compress5} = 2,05 \cdot 10^9 \cdot \delta^{1,28} - 1748$	$F_{Recov5} = 1,11.10^{20} \cdot \delta^{4,497} - 1,67.10^4$		
Г	Іреграда: сталы	Инден ной стержень д	тор : стальной шарик диаметром 12,7 мм, HR иаметром 12,7 мм, HRC 29—30. Частично отс	С 60–64. эжженная инструментальная сталь		
6	21,793	8,169	$F_{compress6} = 8,64 \cdot 10^{8} \cdot \delta^{1,23} - 75,1$	$F_{Recov6} = 2,17 \cdot 10^{15} \cdot \delta^{2,896} - 4,69 \cdot 10^{3}$		
7	32,705	10,546	$F_{Compress7} = 3,83 \cdot 10^8 \cdot \delta^{1,14} - 383,9$	$F_{Recov7} = 2,42 \cdot 10^{11} \cdot \delta^{1,84} - 2,76 \cdot 10^4$		
9	63,825	15,941	$F_{Compress9} = 6,23 \cdot 10^8 \cdot \delta^{1,18} - 1071$	$F_{Recov9} = 5,58 \cdot 10^{18} \cdot \delta^{4,12} - 2,3 \cdot 10^4$		
Индентор: стальной шарик диаметром 12,7 мм, HRC 60–64. Преграда: стальной стержень диаметром 12,7 мм, HRC 24–22. Частично отожженная инструментальная сталь						
8	46,665	12,924	$F_{Compress8} = 1,5 \cdot 10^{9} \cdot \delta^{1,33} + 601,5$	$F_{Recover} = 5,19 \cdot 10^{13} \cdot \delta^{2,61} - 1,79 \cdot 10^4$		
10	76,413	15,301	$F_{Compress10} = 2,24 \cdot 10^8 \cdot \delta^{1.08} - 2230$	$F_{Recov10} = 7,72 \cdot 10^{27} \cdot \delta^{7,08} - 1,35 \cdot 10^4$		
11	87,386	14,752	$F_{Compress11} = 3,32 \cdot 10^8 \cdot \delta^{1,124} - 2107$	$F_{Recov11} = 1,7.10^{17} \cdot \delta^{3,77} - 8,51.10^4$		
	Преграда: с	Инден стальной стерж	тор : стальной шарик диаметром 12,7 мм, HR ень диаметром 12,7 мм, HRC 6—12. Отожже	С 60—64. енная инструментальная сталь		
12	13,015	0,457	$F_{Compress12} = 3,98 \cdot 10^8 \cdot \delta^{1,2} + 43,1$	$F_{Recov12} = 1,83 \cdot 10^{18} \cdot \delta^{3,62} - 1,2 \cdot 10^{3}$		
13	14,661	0,01	$F_{compress13} = 2,5 \cdot 10^9 \cdot \delta^{1,38} + 68,31$	$F_{Recov13} = 8,79 \cdot 10^{11} \cdot \delta^{1.96} - 5119$		
14	36,119	0,01	$F_{Compress14} = 3,56 \cdot 10^7 \cdot \delta^{0.92} - 720,7$	$F_{Recov14} = 1,46 \cdot 10^{30} \cdot \delta^{7,35} - 966,5$		
		Инден Преграда: дюг	тор: стальной шарик диаметром 12,7 мм, HR алюминиевый (2024–T4), стержень лиаметро	С 60 – 64.		
15	20 117	3 100	$E = -9.87.108.8137 \pm 272.2$	E = -2.26.1022.85.044 - 4301		
16	20,117	3,105	$E = -0.56(10^7 \times 1.084) = 200.04$	$F_{Recov15} = 2,2010,000 = 4351$		
17	16 787	3,000	$F_{Compress16} = 9,3010.07 = 399,04$	$F = -0.21(10^{23})(5^{-894} - 14320)$		
17	65.014	3,07	$F_{Compress17} = -0.88 \cdot 10^{-7} \cdot 8^{-1} \cdot 1333$	$F_{Recov17} = 9,2110, 00 = 14320$ $F_{Recov17} = 1,39,10^{23},85,865 = 27070$		
10	88.605	2.72	$F = 7.08 \cdot 10^{6} \cdot 80^{732} - 3481$	$F = 1.6 \cdot 10^{22} \cdot 8^{5,666} - 52280$		
20	89.215	1.08	$F_{Compress19} = 7,50100 = 3401$	$F = -0.72 \cdot 10^{36} \cdot 8^{10.663} - 16260$		
$\frac{20}{89,215} = \frac{1,98}{1,98} = \frac{F_{Compress20} = 5,19\cdot10^{\circ}\cdot\delta^{0.073} - 4163}{F_{Recv20} = 9,73\cdot10^{\circ}\cdot\delta^{10,003} - 16360}$						
индентор: стаљнои шарик диаметром 12,7 мм, гнкС 60 – 64. Преграда: алюминиевый (1100–F) стержень диаметром 12,7 мм, НВ 24						
21	7,803	1,036	$F_{Compress21} = 4,51 \cdot 10^7 \cdot \delta^{1,105} - 65,83$	$F_{Recov21} = 1,45 \cdot 10^{12} \cdot \delta^{2,124} - 8453$		
22	18,075	1,554	$F_{Compress22} = 4,13 \cdot 10^7 \cdot \delta^{1,091} - 335,20$	$F_{Recov22} = 3,73 \cdot 10^{14} \cdot \delta^{2,943} - 17220$		
23	31,486	2,073	$F_{Compress23} = 3,12 \cdot 10^{6} \cdot \delta^{0.76} - 912,27$	$F_{Recov23} = 5,03 \cdot 10^{12} \cdot \delta^{2,445} - 54900$		
24	51,115	0,427	$F_{Compress24} = 1,39 \cdot 10^{6} \cdot \delta^{0,651} - 1393$	$F_{Recov24} = 5,68 \cdot 10^{14} \cdot \delta^{3,305} - 53130$		
Индентор: стальной шарик диаметром 12,7 мм, HRC 60-64. Преграда: штампованный свинцовый стержень диаметром 12,7 мм, HB 0,383						
25	7,696	0,457	$F_{Compress25} = 7,68 \cdot 10^5 \cdot 8^{0,867} - 5,565$	$F_{Recov25} = 1,94 \cdot 10^8 \cdot \delta^{1,13} - 30690$		
26	11.247	0.061	$F = 1.74 \cdot 10^5 \cdot 8^{0.675} - 68.647$	$F = 1.34 \cdot 10^{7} \cdot \delta^{0.575} - 207200$		

10

Расчет распределения энергии для опытов Гольдсмита [7]

Номер опыта	Показатель степени для уравнения сжатия а ₁	Показатель степени для уравнения сжатия b ₁	Энергия шара перед ударом А _{ідоудара} , Дж	Энергия шара после удара А _{іпослеудара} , Дж	Энергия упругих деформаций А _{іупругдеф} , Дж	Энергия пластических деформаций А _{пластдеф} , Дж	Энергия волн А _{іволн} , Дж
Индентор: стальной шарик диаметром 12,7 мм, HRC 60—64. Преграда: стальной стержень диаметром 12,7 мм, HRC 60—64							
1	1,42	2,371	8,86	1,577	3,496	2,564	1,224
2	1,423	1,846	8,908	1,75	3,772	2,229	1,096
3	1,443	3,914	16,331	2,794	4,246	6,076	3,215
4	1,262	2,498	33,134	3,325	9,755	11,462	8,592
5	1,284	4,497	33,589	3,361	7,153	11,115	7,96
Г	Іреграда: стальн	Инден ой стержень д	тор: стальной шар иаметром 12,7 мм,	ик диаметром 12 HRC 29—30. Час	,7 мм, HRC 60-64. тично отожженная	и инструментальная о	сталь
6	1,233	2,896	1,987	0,279	0,524	0,823	0,361
7	1,137	1,839	4,474	0,465	1,055	2,318	0,636
9	1,182	4,107	17,04	1,063	2,724	9,454	3,799
Г	Іреграда: стальн	Инден ой стержень ді	тор: стальной шар иаметром 12,7 мм,	ик диаметром 12 HRC 24—22. Час	,7 мм, HRC 60—64. стично отожженная	и инструментальная о	сталь
8	1,324	2,606	9,109	0,699	2,719	4,592	1,099
10	1,077	7,082	24,242	0,979	3,17	15,242	5,032
11	1,124	3,765	31,942	0,91	3,07	20,957	7,005
	Преграда: с	Инден тальной стержо	тор: стальной шар ень диаметром 12,	ик диаметром 12 7 мм, HRC 6—12.	,7 мм, HRC 60–64. Отожженная инст	рументальная сталь	
12	1,203	3,621	0,709	0,001	0,124	0,217	0,367
13	1,377	1,964	0,899	0,001	0,184	0,182	0,533
14	0,918	7,253	5,457	0,001	0,501	1,952	3,004
Индентор: стальной шарик диаметром 12,7 мм, HRC 60—64. Преграда: дюралюминиевый (2024—T4) стержень диаметром 12.7 мм. НВ 74							
15	1,37	5,044	1,693	0,04	0,215	0,906	0,531
16	1,084	5,966	4,474	0,056	0,259	2,532	1,627
17	1,179	5,894	9,156	0,056	0,717	4,832	3,551
18	1,107	5,865	17,68	0,049	0,746	10,398	6,487
19	0,732	5,666	32,839	0,031	0,987	19,99	11,832
20	0,675	10,633	33,293	0,016	0,577	20,964	11,735
Индентор: стальной шарик диаметром 12,7 мм, HRC 60—64. Преграда: алюминиевый (1100—F) стержень диаметром 12,7 мм, HB 24							
21	1,105	2,124	0,255	0,004	0,021	0,16	0,069
22	1,091	2,943	1,367	0,01	0,095	0,894	0,367
23	0,76	2,445	4,147	0,018	0,135	2,966	1,028
24	0,651	3,305	10,929	0,0008	0,139	7,593	3,196
Индентор: стальной шарик диаметром 12,7 мм, HRC 60—64. Преграда: штампованный свинцовый стержень диаметром 12,7 мм, HB 0,38.							
25	0,867	1,13	0,248	0,0009	0,003	0,222	0,022
26	0,675	0,575	0,529	0,00001	0,003	0,513	0,013

энергии шара до и после удара. Таким образом, энергия ударных волн в материале шара и стержня определяется выражением (5).

$$A_{i B B 0 \lambda} = A_{i g g 0 y g a p} - A_{i n n o c \lambda e y g a a} - A_{i y y n p y r g e} - A_{i n n \lambda a c m g e}.$$
(5)

Рассчитаем энергию пластических и упругих деформаций шара и стержня на основании графиков, приведенных на рис. 1-7 и в табл. 2.

$$A_{iyynpyrge} + A_{inn,acmge} = S_{\Delta OAC} = \int_{0}^{\delta_{A}} F d\delta =$$
$$= \int_{0}^{\delta_{A}} (a_{0}\delta^{a_{1}} + a_{2}) d\delta = \frac{a_{0}}{(a_{1}+1)} \delta_{A}^{(a_{1}+1)} + a_{2}\delta_{A} \quad . \tag{6}$$

$$A_{iyynpyrge} = S_{\Delta BAC} = \int_{\delta_{B}}^{\delta_{A}} F d\delta = \int_{\delta_{B}}^{\delta_{A}} (b_{0}\delta^{b_{1}} + b_{2}) d\delta = \frac{b_{0}}{(b_{1}+1)} \delta_{A}^{(b_{1}+1)} + b_{2}\delta_{A} - \frac{b_{0}}{(b_{1}+1)} \delta_{B}^{(b_{1}+1)} - b_{2}\delta_{B}.$$
 (7)

Относительное распределение энергии для опытов Гольдсмита [7]

Номер опыта	Энергия шара перед ударом А _{ідоудара} , Дж	Отношение энергий (А _{ілослеудара} / А _{ідоудара})	Отношение энергий $(A_{_{iynpyraep}}/A_{_{iAoyAapa}})$	Отношение энергий (А _{іпластдеф} / А _{ідоудара})	Отношение энергий (А _{іволи} / А _{ідоудара})		
Индентор: стальной шарик диаметром 12,7 мм, R _c 60—64. Преграда: стальной стержень диаметром 12,7 мм, R _c 60—64							
1	8,86	17,80%	39,46%	28,94%	13,81%		
2	8,908	19,65%	42,34%	25,02%	12,30%		
3	16,331	17,11%	26,00%	37,21%	19,69%		
4	33,134	10,04%	29,44%	34,59%	25,93%		
5	33,589	10,01%	21,30%	33,09%	23,70%		
Пр	Индентор: еграда: стальной стержень диаме	стальной шарик диа тром 12,7 мм, R _c 29—	метром 12,7 мм, R _c 60 -30. Частично отожж	0—64. хенная инструме	нтальная сталь		
6	1,987	14,04%	26,37%	41,42%	18,17%		
7	4,474	10,39%	23,58%	51,81%	14,22%		
9	17,04	6,24%	15,99%	55,48%	22,29%		
Индентор: стальной шарик диаметром 12,7 мм, R _c 60—64. Преграда: стальной стержень диаметром 12,7 мм, R _c 24—22. Частично отожженная инструментальная сталь							
8	9,109	7,67%	29,85%	50,41%	12,06%		
10	24,242	4,04%	13,08%	62,87%	20,76%		
11	31,942	2,85%	9,61%	65,61%	21,93%		
Индентор: стальной шарик диаметром 12,7 мм, R _c 60—64. Преграда: стальной стержень диаметром 12,7 мм, R _c 6—12. Отожженная инструментальная сталь							
12	0,709	0,14%	17,49%	30,61%	51,76%		
13	0,899	0,11%	20,47%	20,24%	59,29%		
14	5,457	0,02%	9,18%	35,77%	55,05%		
Индентор: стальной шарик диаметром 12,7 мм, HRC 60—64. Преграда: дюралюминиевый (2024—T4) стержень диаметром 12,7 мм, HB 74							
15	1,693	2,36%	12,70%	53,51%	31,36%		
16	4,474	1,25%	5,79%	56,59%	36,37%		
17	9,156	0,61%	7,83%	52,77%	38,78%		
18	17,68	0,28%	4,22%	58,81%	36,69%		
19	32,839	0,09%	3,01%	60,87%	36,03%		
20	33,293	0,05%	1,73%	62,97%	35,25%		
Индентор: стальной шарик диаметром 12,7 мм, HRC 60—64. Преграда: алюминиевый (1100—F) стержень диаметром 12,7 мм, HB 24							
21	0,255	1,57%	8,24%	62,75%	27,06%		
22	1,367	0,73%	6,95%	65,40%	26,85%		
23	4,147	0,43%	3,26%	71,52%	24,79%		
24	10,929	0,01%	1,27%	69,48%	29,24%		
Индентор: стальной шарик диаметром 12,7 мм, HRC 60—64. Преграда: штампованный свинцовый стержень диаметром 12,7 мм, HB 0,383							
25	0,248	0,32%	1,21%	89,52%	8,87%		
26	0,529	0,00%	0,57%	96,98%	2,46%		

Полученные величины энергии приведены в табл. 3 и 4.

Выводы и заключение. При анализе полученных данных, представленных на рис. 1—7 и в табл. 2—4, можно сделать следующие выводы.

1. Получено цифровое описание экспериментальных графиков [7], которое позволяет оценить соотношение между силой и сближением для материалов, наиболее часто применяющихся в ходе ударного процесса при скоростях удара до 100 м/с (табл. 5).

12

Итоговые интерполяционные зависимости при ударе шара о торец стержня

Номер опыта	Скорость удара шара о стержень, м/с	Величина коэффициента Герца К _н , кг/м ^{1/2} с ²	Зависимость сила — глубина внедрения для первой половины удара (сжатие)	Зависимость сила — глубина внедрения для второй половины удара (разгрузка)		
Индентор: стальной шарик диаметром 12,7 мм, HRC 60-64. Преграда: стальной стержень диаметром 12,7 мм, HRC 60-64						
1	46,025	1,181.1010	$F_{Compress1} = 0,506 \cdot K_H \cdot \delta^{1,42}$	$F_{Recov1} = 1407 \cdot K_H \cdot \delta^{2,15}$		
2	46,147	1,181·10 ¹⁰	$F_{Compress2} = 0.521 \cdot K_H \cdot \delta^{1.42}$	$F_{Recov2} = 1390 \cdot K_H \cdot \delta^{2,15}$		
3	62,48	1,181·10 ¹⁰	$F_{Compress3} = 0.425 \cdot K_H \cdot \delta^{1.38}$	$F_{Recov3} = 2,478 \cdot 10^8 \cdot K_H \cdot \delta^{3,48}$		
4	89,002	1,181.1010	$F_{compress4} = 0,142 \cdot K_H \cdot \delta^{1,266}$	$F_{Recov4} = 9,281 \cdot 10^9 \cdot K_H \cdot \delta^{3,78}$		
5	89,611	1,181.1010	$F_{\rm Compress5} = 0,174 \cdot K_H \cdot \delta^{1,288}$	$F_{Recov5} = 9,411 \cdot 10^9 \cdot K_H \cdot \delta^{3,797}$		
Пр	еграда: стальной ст	Индентор: сталя ержень диаметром	ной шарик диаметром 12,7 мм, HRC 60— 12,7 мм, HRC 29—30. Частично отожжен	64. ная инструментальная сталь		
6	21,793	1,181·10 ¹⁰	$F_{Compression} = 0,073 \cdot K_H \cdot \delta^{1,23}$	$F_{Record} = 1,835 \cdot 10^5 \cdot K_H \cdot \delta^{2.51}$		
7	32,705	1,181·10 ¹⁰	$F_{Compress7} = 0,061 \cdot K_H \cdot \delta^{1,21}$	$F_{Recov7} = 2,181 \cdot 10^{6} \cdot K_{H} \cdot \delta^{2,72}$		
9	63,825	1,181·10 ¹⁰	$F_{Compress9} = 0,053 \cdot K_{H} \cdot \delta^{1,19}$	$F_{Recov9} = 4,729 \cdot 10^8 \cdot K_H \cdot \delta^{3,94}$		
Индентор: стальной шарик диаметром 12,7 мм, HRC 60–64. Преграда: стальной стержень диаметром 12,7 мм, HRC 24–22. Частично отожженная инструментальная сталь						
8	46,665	1,181.1010	$F_{Compress^{8}} = 0,127 \cdot K_{H} \cdot \delta^{1,32}$	$F_{Recovb} = 4391 \cdot K_H \cdot \delta^{2,22}$		
10	76,413	1,181·10 ¹⁰	$F_{compress10} = 0.039 \cdot K_H \cdot \delta^{1.18}$	$F_{Recov10} = 2,542 \cdot 10^5 \cdot K_H \cdot \delta^{2,5}$		
11	87,386	1,181·10 ¹⁰	$F_{compress11} = 0,028 \cdot K_H \cdot \delta^{1,13}$	$F_{Recov11} = 1,14 \cdot 10^7 \cdot K_H \cdot \delta^{2,79}$		
	Преграда: стальн	Индентор: сталн ой стержень диаме	лной шарик диаметром 12,7 мм, HRC 60— тром 12,7 мм, HRC 6—12. Отожженная и	64. нструментальная сталь		
12	13,015	1,181·10 ¹⁰	$F_{Compress 12} = 0,034 \cdot K_{H} \cdot \delta^{1.2}$	$F_{Recov12} = 1,551 \cdot 10^{8} \cdot K_H \cdot \delta^{3,19}$		
13	14,661	1,181.1010	$F_{compress13} = 0,031 \cdot K_H \cdot \delta^{1,175}$	$F_{Recov13} = 2,632 \cdot 10^{8} \cdot K_{H} \cdot \delta^{3,39}$		
14	36,119	1,181·10 ¹⁰	$F_{compress14} = 0,003 \cdot K_H \cdot \delta^{0,926}$	$F_{Recov14} = 3,423 \cdot 10^{11} \cdot K_H \cdot \delta^{4,06}$		
	Прег	Индентор: сталя рада: дюралюмини	ьной шарик диаметром 12,7 мм, HRC 60— евый (2024—T4) стержень диаметром 12,7	64. ^г мм, НВ 74		
15	20,117	6,276·10 ⁹	$F_{Compress15} = 0,141 \cdot K_H \cdot \delta^{1,363}$	$F_{Recov15} = 3,602 \cdot 10^{16} \cdot K_H \cdot \delta^{4,97}$		
16	32,705	6,276·10 ⁹	$F_{Compress16} = 0,081 \cdot K_H \cdot \delta^{1,298}$	$F_{Recov16} = 1,208 \cdot 10^{15} \cdot K_H \cdot \delta^{4,67}$		
17	46,787	6,276·10 ⁹	$F_{compress17} = 0,029 K_H \delta^{1,181}$	$F_{Recov17} = 1,468 \cdot 10^{14} \cdot K_{H} \cdot \delta^{4,48}$		
18	65,014	6,276·10 ⁹	$F_{Compress18} = 0,016 \cdot K_H \cdot \delta^{1,118}$	$F_{Recov18} = 2,192 \cdot 10^{13} \cdot K_H \cdot \delta^{4,23}$		
19	88,605	6,276·10 ⁹	$F_{Compress19} = 0,001 \cdot K_H \cdot \delta^{0,750}$	$F_{Recov19} = 2,554 \cdot 10^{12} \cdot K_H \cdot \delta^{3,998}$		
20	89,215	6,276·10 ⁹	$F_{Compress20} = 0,001 \cdot K_H \cdot \delta^{0,696}$	$F_{Recov20} = 3,423 \cdot 10^{11} \cdot K_H \cdot \delta^{3,89}$		
Индентор: стальной шарик диаметром 12,7 мм, HRC 60–64. Преграда: алюминиевый (1100–F) стержень диаметром 12,7 мм, HB 24						
21	7,803	6,276·10 ⁹	$F_{Compress21} = 0,007 \cdot K_{H} \delta^{1,111}$	$F_{P_{accur21}} = 230,74 \cdot K_H \cdot \delta^{1,629}$		
22	18,075	6,276·10 ⁹	$F_{Compress1} = 0,007 \cdot K_{1} \delta^{1,104}$	$F_{P_{0,007}(2)} = 594,65 \cdot K_{u} \cdot \delta^{1,729}$		
23	31,486	6,276·10 ⁹	$F_{Compress23} = 0,0005 \cdot K_H \cdot \delta^{0.78}$	$F_{Recov23} = 3502,86 \cdot K_{H} \cdot \delta^{1,807}$		
24	51,115	6,276·10 ⁹	$F_{compress24} = 0,001 \cdot K_{H} \delta^{0,672}$	$F_{Recov24} = 9,054 \cdot 10^4 \cdot K_H \cdot \delta^{2,183}$		
Индентор: стальной шарик диаметром 12,7 мм, HRC 60—64. Преграда: штампованный свинцовый стержень диаметром 12,7 мм, HB 0,383						
25	7.696	$2,486\cdot10^9$	$F_{-} = 0.0003 \cdot K \cdot \delta^{0.868}$	$F_{\rm max} = 0.078 \cdot K \cdot \delta^{0,774}$		
26	11,247	2,486·10 ⁹	$F_{Compress26} = 0,00007 \cdot K_{H} \delta^{0,686}$	$F_{Recov25} = 0,005 \cdot K_{IJ} \cdot \delta^{0,419}$		

2. В результате цифровой обработки экспериментальных графиков [7] получены данные о распределении энергии в ходе ударного процесса при скоростях удара до 100 м/с (табл. 4 и 5).

3. Полученные данные необходимо использовать при проектировании ударных технологических процессов (ударная ковка и штамповка), а также аналогичных ударных машин.

Библиографический список

1. Johnson K. L. Contact mechanics. University of Cambridge, Cambridge University Press, 1985. 462 p. DOI: 10.1017/ CBO9781139171731.

2. Goldsmith W. Impact: The theory and physical behavior of colliding solids. London: Arnold, 1960. 379 p.

3. Stronge W. J. Impact mechanics. University of Cambridge, Cambridge University Press, 2000. 300 p.

4. Александров Е. В., Соколинский В. Б. Прикладная теория и расчеты ударных систем: моногр. Москва: Наука, 1969. 201 с.

5. Popov V. L. Contact Mechanics and Friction. Physical Principles and Applications. Springer–Verlag, 2010, 362 p.

6. Hertz H. In Miscellaneous papers / Eds.: D. E. Jones, G. A. Schott. London: Macmillan, New York, Macmillan and co, 1896. 384 p.

7. Goldsmith W., Lyman P. The penetration of Hard-Steel Spheres into Plane Metal Surfaces // Journal of Applied Mechanics. 1960. Vol. 27. P. 717-725. DOI: 10.1115/1.3644088.

8. Wu C., Thornton C., Li L. A semi-analytical model for oblique impacts of elastoplastic spheres // Proceedings of The Royal Society A. 2009. Vol. 465. P. 937-960. DOI: 10.1098/rspa.2008.0221.

9. Thornton C. Coefficient of Restitution for Collinear Collisions of Elastic – perfectly Plastic Spheres // Journal of Applied Mechanics. 1997. Vol. 64. P. 383–386. DOI: 10.1115/1.2787319.

10. Vu-Quoc L., Zhang X. An elastoplastic contact forcedisplasement model in the normal direction: displasement-driven version // Proceedings of the Royal Society A. 1999. Vol. 455. P. 4013-4044. DOI: 10.1098/rspa.1999.0488.

11. Li L., Wu C., Thornton C. A theoretical model for the contact of elastoplastic bodies // Journal Mechanical Engineering Science. 2002. Vol. 2016. Part C. P. 421-431. DOI: 10.1243/0954406021525214.

12. Labous L., Rosato A., Dave R. Measurements of collisional properties of spheres using high-speed video analysis // Physical Review E. 1997. Vol. 56 (5). P. 5717-5725. DOI: 10.1103/ PhysRevE.56.5717.

13. Gunes R., Aydin M., Apalak M. [et al.]. The elasto – plastic impact analysis of functionally graded circular plates under low – velocities // Composite Structures. 2011. Vol. 93. P. 860–869. DOI: 10.1016/j.compstruct.2010.07.008.

14. Christoforou A., Yigi A., Majeed M. Low-Velocity Impact Response of Structures With Local Plastic Deformation: Characterization and Scaling // Journal of Computational and Nonlinear Dynamics. 2013. Vol. 8 (1). P. 011012-1-011012-10. DOI: 10.1115/1.4006532.

15. Чернявский Д. И., Гапон Д. Д. Применение законов сохранения энергии и импульса при проведении бестраншейной горизонтальной прокладки коммуникаций // Омский научный вестник. 2018. № 4 (160). С. 10–17. DOI: 10.25206/1813-8225-2018-160-10-17.

16. Chernyavsky D., Gapon D. The relationship between the laws of conservation of energy and momentum for low speed impact of several bodies // Journal of Applied Nonlinear Dynamics. 2020. Vol. 9, Issue 2. P. 259–271. DOI: 10.5890/JAND.2020.06.008.

ЧЕРНЯВСКИЙ Дмитрий Иванович, доктор технических наук, доцент (Россия), профессор кафедры «Машиноведение». SPIN-код: 8610-2957 AuthorID (РИНЦ):473365 ORCID: 0000-0002-7585-433X AuthorID (SCOPUS): 6506002416 ResearcherID: N-2038-2015

ЧЕРНЯВСКИЙ Даниил Дмитриевич, студент гр. ФИТ-201 факультета информационных технологий и компьютерных систем.

Адрес для переписки: dichernyavskiy@omgtu.tech

Для цитирования

Чернявский Д. И., Чернявский Д. Д. Расчет на прочность торсионной подвески микрозеркала (MEOMS) // Омский научный вестник. 2021. № 5 (179). С. 5—14. DOI: 10.25206/1813-8225-2021-179-5-14.

Статья поступила в редакцию 23.09.2021 г. © Д. И. Чернявский, Д. Д. Чернявский