УДК 621.01

Р. Т. ИСЛАМОВ Ф. Ф. ХАБИБУЛЛИН М. Р. ФАИЗОВ

Казанский национальный исследовательский технический университет — КАИ им. А. Н. Туполева, г. Казань

ИССЛЕДОВАНИЕ КИНЕМАТИКИ ПРОСТРАНСТВЕННОГО 5R МЕХАНИЗМА С 4-ЦИКЛИЧНЫМ ДВИЖЕНИЕМ

В данной статье представлены исследования пространственных механизмов Беннетта. Для исследования задаются дополнительные соотношения звеньев и неравенств работоспособности, которые входят в расчет механизмов. Определяются кинематические параметры ведомого звена главного механизма. Полученные результаты изображаются на графиках зависимости вращения входного звена от выходного. Используется дополнительный метод векторных направляющих для расчета угловой скорости и ускорения шатуна механизма.

Ключевые слова: пятизвенный механизм, Беннетт, призрачный угол, балансир.

Введение. Исследователи всего мира заинтересованы в улучшение жизни человека и развитии научно-технического прогресса [1-2]. Многие авторы нашего времени в своих исследованиях изучают пространственные механизмы [3-4]. Большинство авторов стремятся создать уникальный экземпляр или расширить базу существующих пространственных механизмов [5-6]. В данной работе исследуется один из типов стандартных механизмов Беннетта с пятью звеньями, но с особенными значениями переменных и невидимым шарниром, определяющим пространственное перемещение под заданным углом [7-8].

Основа создания четырехзвенного механизма. Создается механизм, в основу которого закладываются параметры $\alpha_1 = \alpha_3 = 75^\circ$, $\alpha_4 = \alpha_2 = 90^\circ$, а также определенное условие собираемости — $l_1 = l_3$, $l_2 = l_4$ (рис. 1). Основное теоретическое правило сборки механизма описывается равенствами 1, которые представлены ниже:

$$\frac{l_1}{\sin \alpha_1} = \frac{l_2}{\sin \alpha_2}$$

$$h'' = \frac{2K}{l_2}$$

$$H = h'' \sin \alpha_2 = \frac{1}{l_2} 2K \sin \alpha_2$$

$$h'' = \frac{2K}{l_1}$$

$$H = h'' \sin \alpha_1 = \frac{1}{l_1} 2K \sin \alpha_1$$
(1)

площадь треугольников ABD и BCD; *Н* — высота, опущенная из вершины В на плоскость пирамиды.

Получен четырехзвенный механизм с основными параметрами для создания пятизвенного механизма. Для реализации механизма определены параметры: $l_1 = 30$ мм, $l_2 = 93,16$ мм, следовательно, остальные звенья также равны другим сторонам согласно выше указанным условиям.

На рис. 2 представлена структурная схема пятизвенного механизма Беннетта. Механизм пронумерован и описан со всеми углами, которые необходимы для расчета. Детализация структурной схемы позволяет ориентироваться в формулах механики Беннетта. Значения условных данных описаны по мере расчета движения.

Образование пятизвенного механизма. Созданный механизм с рабочими параметрами позволяет соединить два четырехзвенных механизма в единую вращающуюся систему, где подобные звенья совпадают (рис. 1).

Тогда объединив станины и отбросив одинаковые звенья, синтезируется новый механизм, в котором заданные параметры используются, как новые равенства выражения. Углы звеньев составляют: $\alpha_1 = \alpha_3 = 75$ °; $\alpha_4 = 90$ °; $\alpha_5 = 65$ °, учитываются условия возможной реализации механизма с пятью звеньями, где $\alpha_5 < \alpha_1 < \alpha_4$, в котором используются два кривошипа, где угол невидимого шарнира $\beta_1 = 90$ ° [9-10]. Звенья 1 и 3 всегда равны друг другу. Основным базовым условием реализации пятизвенного механизма будет являться следующее выражение:

$$\frac{l_1}{\sin\alpha_1} = \frac{l_4}{\sin\alpha_4} = \frac{l_5}{\sin\alpha_5} \quad (2)$$

где h — длина перпендикуляра, опущенного из вершины В на сторону AD из треугольника ABD; K —

Рис. 1. Образование механизма

Чтобы понять, какой именно пространственный 5R Беннетта исследуется, определяется его степень подвижности по формуле Малышева – Сомова.

Стандартная структурная формула для пространственных 5R механизмов примет вид:

$$W = 6(n - 1) - 5p_5 + S.$$

Параметры в формуле: n — число звеньев, p_5 — число пар, S — число согласованных размеров (избыточные связи) по теории известных исследователей. S = 2.

Наглядно подставим все числовые значения по данному механизму:

$$W = 6(5 - 1) - 5 \cdot 5 + 2 = 1.$$

Результат решения структурной формулы поясняет, что пятизвенный 5R механизм вращается только от ведущего или ведомого кривошипа, относительно неподвижного звена, а именно стойки или станины, у механизма степень подвижности равна единице.

Так как по нашим условиям самый важный элемент — угол β_1 , значит, параметры звена 2 α_2 и l_2 пятизвенного механизма, созданного из двух четырехзвенных механизмов Беннетта, описываются через параметры звеньев 5 и 4 и определяются выражениями 3 и 4:

$$\alpha_{2} = \arccos\left(\frac{\cos\alpha_{4}\cos\alpha_{5} + }{+\sin\alpha_{5}\sin\alpha_{4}\cos\beta_{1}} \right), \qquad (3)$$

где а₂ = 90 °.

$$l_{2} = -\frac{1}{A} \begin{bmatrix} l_{5} \left(\sin \alpha_{4} \cos \alpha_{5} \cos \beta_{1} - \right) \\ -\sin \alpha_{5} \cos \alpha_{4} \end{bmatrix} + l_{4} \left(\sin \alpha_{5} \cos \alpha_{4} \cos \beta_{1} - \right) \\ + l_{4} \left(\sin \alpha_{5} \cos \alpha_{4} \cos \alpha_{5} \right) \end{bmatrix} \sin \alpha_{2}.$$
(4)

Теоретическая пространственная высота звеньев 4 и 5 определяется по выражениям 5 и 6:

$$h_2 = \frac{1}{A} \left(l_4 \sin \alpha_5 - l_5 \sin \alpha_4 \cos \alpha_2 \right) \sin \beta_1.$$
 (5)

$$h_3 = \frac{1}{A} \left(l_5 \sin \alpha_4 - l_4 \sin \alpha_5 \cos \alpha_2 \right) \sin \beta_1 , \qquad (6)$$

где

$$A = (\sin \alpha_5 \cos \alpha_4 - \sin \alpha_4 \cos \alpha_5 \cos \beta_1)^2 + + \sin^2 \alpha_4 \sin^2 \beta_1 \cdot$$

пятизвенного механизма

Назначения углов Δ приведено ниже

$$\Delta_{\gamma_1} = \arccos\left[\frac{1}{\sin a_2} \begin{pmatrix} \sin \alpha_5 \cos \alpha_4 - \\ -\sin \alpha_4 \cos \alpha_5 \cos \beta_1 \end{pmatrix}\right].$$
(7)

$$\Delta_{\gamma_2} = \arccos \left| \frac{\frac{1}{\sin a_2} \times \left| \left| \frac{\sin \alpha_1 + \cos \alpha_2 + \sin \alpha_2 + \cos \alpha_2 + \sin \alpha_2 + \cos \alpha_2 + \sin \alpha_2$$

Выше раскрыт пятизвенный механизм из двух механизмов с четырьмя звеньями, со всеми необходимыми параметрами (рис. 2).

По расчетам данного механизма через известные параметры $I_5 = 43,4$ мм, скорректировав параметры через выражение 4, $I_2 = 93,5$ мм.

Исследователь Гольдберг показал возможность получения «сокращенного (syncopated)» пятизвенного механизма, метод образования которого описан в данном исследовании.

Исследованием структуры и кинематики пятизвенного механизма исследователь М. Гольдберг не занимался.

Расчет кинематики механизма. В статье представлена структурная схема пятизвенного механизма Беннетта (рис. 2).

Механизм пронумерован по звеньям и изображен с углами движения. Структурная схема позволяет ориентироваться и анализировать кинематические расчёты, а именно перемещения, скорости и ускорения [11—12].

Уравнение углового перемещения звена 4:

$$\psi_{4} = \gamma_{1} + \gamma_{2} - 180^{\circ} = \arcsin \frac{c_{1} \sin \phi_{1}}{a_{1} - b_{1} \cos \phi_{1}} + + \arcsin \frac{c_{2} \sin(\phi_{1} + \beta_{1})}{a_{2} - b_{2} \cos(\phi_{1} + \beta_{1})} - 180^{\circ}, \qquad (9)$$

 $\begin{aligned} \stackrel{\text{rAe}}{a_1} &= 1 - \cos\alpha_1 \cos\alpha_5, b_1 = \sin\alpha_1 \sin\alpha_5, c_1 = \cos\alpha_5 - \cos\alpha_1, \\ a_2 &= 1 - \cos\alpha_1 \cos\alpha_4, b_2 = \sin\alpha_1 \sin\alpha_4, c_2 = \cos\alpha_1 - \cos\alpha_4. \end{aligned}$

Условие работоспособности, определяющей направление угловой скорости:

$$c_1 > 0; c_2 > 0.$$

Уравнение углового перемещения звена 4 выражается угловым перемещением звена 1, которое представлено на рис. 3.

Если необходимо рассчитать угол движения звена 4 через тригонометрические функции, то применяется выражение 10, и результат углового перемещения звена 4 будет представлен в следующем виде (рис. 4).

$$-\frac{b_1c_2\sin(\varphi_1+\beta_1)+\cos(\varphi_1+\alpha_2c_1)\sin\beta_1}{a_1a_2+\frac{1}{2}b_1b_2[\cos(2\varphi_1+\beta_1)+\cos\beta_1]-a_1b_2\cos(\varphi_1+\beta_1)-a_2b_1\cos\varphi_1}.$$
(10)

Угловая скорость ведомого звена 4 получается путем дифференцирования по времени выражения 9, а результат дифференцирования представлен в выражении 11:

 $\omega_{4} = \begin{bmatrix} \frac{C_{1}}{a_{1} - b_{1} \cos \varphi_{1}} + \\ + \frac{C_{2}}{a_{2} - b_{2} \cos(\varphi_{1} + \beta_{1})} \end{bmatrix} \omega_{1}.$ (11)

Результат угловой скорости звена 4 (рис. 5).

Угловое ускорение ведомого звена 4 определяется выражением 12, а результат исследования представляется графически (рис. 6).

$$\varepsilon_{4} = \begin{cases}
 \frac{b_{1}c_{1}\sin\phi_{1}}{(a_{1}-b_{1}\cos\phi_{1})^{2}} + \\
 + \frac{b_{2}c_{2}\sin(\phi_{1}+\beta_{1})}{[a_{2}-b_{2}\cos(\phi_{1}+\beta_{1})]^{2}}
 \end{bmatrix} \omega_{1}^{2} .
 (12)$$

Угловые скорости и ускорения шатуна. При силовом исследовании пятизвенного механизма необходимо знать угловые скорости и ускорения шатунов (рис. 7).

Угловая скорость и угловое ускорение шатуна 2 определяются, как и в механизме Беннетта.

Угловая скорость шатуна 3 находится из выражения 13:

$$\omega_3 = \omega_4 + \omega_{3/4} \tag{13}$$

$$\begin{split} \omega_3^{X_D} &= \omega_4 \sin \alpha_4 \cos(180^\circ - \varphi_2) = \\ &= -\omega_4 \sin \alpha_4 \cos \varphi_2, \\ \omega_3^{Y_D} &= \omega_4 \sin \alpha_4 \sin(180^\circ - \varphi_2) = \\ &= -\omega_4 \sin \alpha_4 \sin \varphi_2, \\ \omega_3^{Z_D} &= \omega_4 \cos \alpha_4 + \omega_{3/4}. \end{split}$$

Учитывая параметры угловой скорости ($\omega_{3/4} = \omega_1$) и угол перемещения второго звена $\varphi_2 = \varphi_1 + \beta_{1'}$ получаем угловую скорость шатуна 3:

$$\begin{array}{l}
\left. \omega_{3}^{X_{D}} = -\omega_{4}\sin\alpha_{4}\cos(\varphi_{1} + \beta_{1}) \\
\left. \omega_{3}^{Y_{D}} = -\omega_{4}\sin\alpha_{4}\sin(\varphi_{1} + \beta_{1}) \\
\left. \omega_{3}^{Z_{D}} = \omega_{4}\cos\alpha_{4} + \omega_{1} \\
\end{array} \right\}.$$
(14)

В направляющих векторах угловой скорости ведомого шатуна 3 ω_4 используются из формулы 11. Результат исследования формулы 14 с объединенными формулами выведен на график (рис. 8).

Продифференцировав по времени выражение 14 и приняв ω_1 — угловая скорость имеет постоянное числовое значение, теоретически равное 1, получим проекции углового ускорения шатуна 3:

$$\begin{aligned} \varepsilon_{3}^{X_{D}} &= -\varepsilon_{4} \sin \alpha_{4} \cos(\varphi_{1} + \beta_{1}) + \\ &+ \omega_{1} \omega_{4} \sin \alpha_{4} \sin(\varphi_{1} + \beta_{1}), \\ \varepsilon_{3}^{Y_{D}} &= -\varepsilon_{4} \sin \alpha_{4} \sin(\varphi_{1} + \beta_{1}) + \\ &+ \omega_{1} \omega_{4} \sin \alpha_{4} \cos(\varphi_{1} + \beta_{1}), \\ \varepsilon_{3}^{Z_{D}} &= \varepsilon_{4} \cos \alpha_{4}. \end{aligned}$$

$$(15)$$

40

МАШИНОСТРОЕНИЕ

41

Рис. 7. Схема угловой скорости шатуна

Рис. 8. Угловая скорость шатуна

Рис. 9. Угловое ускорение шатуна

Рис. 10. Экспериментальная модель 5R Беннетта

В направляющих векторах углового ускорения шатуна 3 ω₄ используются из формулы 11, а ε₄ из формулы 12. Результат исследования формулы 15 с объединенными формулами выведен на график (рис. 9).

Использовав все методы исследования пространственного механизма и получив стабильные математические модели с непрерывным движением на рисунках, а именно без обрывов прямых, была реализована экспериментальная модель 5R Беннетта заданной структуры и произвольных, подбираемых геометрических размеров (рис. 10) [13–14].

Заключение. Анализ пространственных механизмов с вращательными парами привел к созданию пятизвенного механизма, полученного путем объединения двух одинаковых механизмов с четырьмя звеньями [15–16]. В основе получен механизм с положительным условием неравенства звеньев и призрачным углом β, =90.

5R механизм Беннетта исследован теоретически на кинематические параметры. Выражения определяют положение ведомого звена в зависимости от положения движения ведущего. Получено угловое перемещение первого и второго типа, а также результат угловой скорости и ускорения пространственного механизма с пятью звеньями. Матричным методом по векторным направляющим проведено исследование угловой скорости и углового ускорения ведомого звена — шатуна. В матричном методе использован многоуровневый прием формул. По результатам исследования приема многоуровневой задачи демонстрируется работоспособность математической модели, представленной на рисунках.

Исследование выражений показывает, что у механизма угловое ускорение ведомого кривошипа меняет свой знак четыре раза за один цикл. Смена углового значения 4 раза говорит о том, что механизм найдет применение в роли многозадачной смене режимов, нежели показателя поступательного постоянного режима работы.

На основе данного исследования изготовлена экспериментальная модель одноподвижного пространственного 5R механизма.

Библиографический список

 Беззаметнова Д. М., Хабибуллин Ф. Ф., Тажибаева А. В. Адаптивная конструкция элемента управления летательного аппарата // Молодежь. Техника. Космос: тр. науч.-техн. конф. В 2 т. Санкт-Петербург, 2021. Т. 1. С. 249–252.

2. Косых А. В., Крыжановский Д. А., Хазан В. Л. Зависимость вероятности ошибок от величины телеграфных искажений // Динамика систем, механизмов и машин. 2019. Т. 7, № 2. С. 227 – 232. DOI: 10.25206/2310-9793-7-2-227-232.

3. Шалай В. В., Щерба В. Е., Пустовой Н. В., Занин А. В. О профилировании рабочей полости второй ступени в поршневой гибридной энергетической машине объемного действия // Химическое и нефтегазовое машиностроение 2020. № 3. С. 19-23.

4. Budniak Z., Bil T. Modelling and Motion Analysis of Five-Bar 5R Mechanism // International Journal of Applied Mechanics and Engineering. 2014. Vol. 19 (4). DOI: 10.2478/ijame-2014-0046.

5. Мудров А. П., Мудров А. Г., Пикмуллин Г. В. Проектирование пространственного 5R механизма по заданному закону движения выходного звена // Вестник Казанского государственного аграрного университета. 2020. Т. 5, № 2 (58). DOI: 10.12737/2073-0462-2020-107-113.

6. Валиев А. И., Курылев Д. В. Экспериментальная установка для исследования процесса электрохимической обработки кромок профиля пера лопаток газотурбинного двигателя // Вестник Казанского технического университета им. А. Н. Туполева. 2021. Т. 77, № 1. С. 57–61.

7. Кесель Б. А., Кесель Л. Г. Энергоэффективность мобильной газотурбинной электростанции малой мощности для электроснабжения буровой 2021 // Вестник Казанского технического университета им. А. Н. Туполева. 2021. Т. 77, № 1. С. 71—75.

8. Щерба В. Е., Занин А. В., Шалай В. В., Пустовой Н. В. Расчет термодинамически эффективного закона изменения скорости жидкостного поршня в процессе сжатия во второй ступени поршней гибридной энергетической машины объемного действия // Химическое и нефтегазовое машиностроение. 2020. № 3. С. 19–23.

9. Миронов А. А., Исаев С. А., Скрыпник А. Н., Попов И. А., Гортышев Ю. Ф. Физическое моделирование теплогидравлических характеристик каналов с овально-траншейными вихрегенераторами // Тепловые процессы в технике. 2020, Т. 12, № 9. С. 386 – 402.

10. Фаизов М. Р., Мудров А. П. Исследование движения сферического тренажера // Вестник Московского авиационного института. 2019. Т. 26, № 1 С. 182–191.

11. Skrypnik A. N., Shcelchkov A. V., Gortyshov Yu. F., Popov I. A. Artifician neural networks application on friction factor and heat transfer coefficients prediction in tubes with inner helical-finning // Applied Thermal Engineering. 2022. Vol. 206 (21-22). 118049. DOI: 10.1016/j.applthermaleng.2022.118049.

12. Рощин В. В., Хабибуллин Ф. Ф., Ерахмадов С. Н. К оценке температурного состояния шарикоподшипников опор ГТД повышенной теплонапряженности // Вестник Казанского государственного технического университета им. А. Н. Туполева. 2019. Т. 75, № 3. С. 66–69.

13. Баянов И. М., Гортышов Ю. Ф., Тонконог В. Г., Тонконог М. И. Моделирование динамики двухфазного потока в сепараторе // Вестник Казанского государственного технического университета им. А. Н. Туполева. 2013. № 4. С. 34–42.

14. Lustin A. D., Egorov S. V. Defining relation of vibration of vehicle suspension with the mass and rigidity design deviations // International Journal of Applied Engineering Research. 2015. Vol. 10, no. 24. P. 44629-44635.

15. Куликов С. А., Хабибуллин Ф. Ф., Тажибаева А. В. Исследования влияния количества звеньев на кинематику пространственного механизма // Аспирант. 2021. № 2 (59). С. 105–107.

16. Мудров П. Г. Пространственные механизмы с вращательными парами. Казань: Изд-во Казан. ун-та, 1976. 264 с.

ИСЛАМОВ Ринат Тагирович, аспирант кафедры «Машиноведение и инженерная графика» Казанского национального исследовательского технического университета им. А. Н. Туполева-КАИ (КНИ-ТУ-КАИ), г. Казань.

Адрес для переписки: Rinat.Islamov@tppt.ru

ХАБИБУЛЛИН Фаниль Фаргатович, кандидат технических наук, доцент кафедры «Машиноведение и инженерная графика» КНИТУ-КАИ, г. Казань. Адрес для переписки: fanil_arsk@mail.ru

ФАИЗОВ Марат Рауфович, аспирант кафедры «Машиноведение и инженерная графика» КНИТУ-КАИ, г. Казань.

Адрес для переписки: faizovmarat92@gmail.com

Для цитирования

Исламов Р. Т., Хабибуллин Ф. Ф., Фаизов М. Р. Исследование кинематики пространственного 5R механизма с 4-цикличным движением // Омский научный вестник. 2022. № 2 (182). С. 38-42. DOI: 10.25206/1813-8225-2022-182-38-42.

Статья поступила в редакцию 26.02.2022 г. © Р. Т. Исламов, Ф. Ф. Хабибуллин, М. Р. Фаизов