УДК/UDC 004.921

DOI: 10.25206/1813-8225-2025-196-43-50

EDN: BIQLJD

Научная статья/Original article

ФУНКЦИОНАЛЬНО-ВОКСЕЛЬНЫЙ МЕТОД ДЛЯ ГЕОМЕТРИЧЕСКОГО ОПИСАНИЯ ЗОНЫ ОБНАРУЖЕНИЯ РАДИОЛОКАЦИОННОЙ СТАНЦИИ

А. Б. Яров¹, А. В. Толок^{1,2}, А. Е. Панкова³, А. Е. Ченцов³

¹ Московский государственный технологический университет «СТАНКИН», Россия, 127055, г. Москва, Вадковский пер., 1
 ² Институт проблем управления им. В. А. Трапезникова РАН, Россия, 117997, г. Москва, ул. Профсоюзная, 65
 ³ Военная академия воздушно-космической обороны имени Маршала Советского Союза Г. К. Жукова, Россия, 170100, г. Тверь, ул. Жигарева, 50

В исследовании разработана усовершенствованная методика построения точных геометрических моделей зон обнаружения радиолокационных станций наземного базирования. Основной акцент сделан на интеграции функционально-воксельного подхода. Аналитическое описание диаграммы направленности задаётся через кусочно-заданные функции с углами $\varepsilon_{\min}=0,1^\circ$; $\varepsilon_0=1,7^\circ$; $\varepsilon_{\max}=4^\circ$. Учтено преобразование между полярной и декартовой системами координат, а также применены R-функции для объединения используемых аналитических уравнений. Моделирование осуществляется с учётом интерференционного множителя земли с использованием следующих вычислительных методов: разложение матриц 5×5 на подматрицы 4×4 методом Лапласа; построение локальных аппроксимирующих плоскостей с нормированием коэффициентов. В работе разработаны 2D-модели с максимальной дальностью обнаружения 125,5 км, а также построены 3D-модели. В связи с использованием функционально-воксельного метода были построены базовые М-образы локальных характеристик. Точность моделирования соответствует показаниям функционально-воксельного метода, следовательно, значения модели рассчитываются в каждой точке и поддерживают непрерывность в зависимости от используемого масштаба.

Ключевые слова: функционально-воксельный метод, М-образ, R-функции, однородный вектор, локальные геометрические характеристики, диаграмма направленности, моделирование радиолокационных станций.

Для цитирования: Яров А. Б., Толок А. В., Панкова А. Е., Ченцов А. Е. Функционально-воксельный метод для геометрического описания зоны обнаружения радиолокационной станции // Омский научный вестник. 2025. № 4 (196). С. 43—50. DOI: 10.25206/1813-8225-2025-196-43-50. EDN: BIQLJD.

© Яров А. Б., Толок А. В., Панкова А. Е., Ченцов А. Е., 2025. Контент доступен под лицензией Creative Commons Attribution 4.0 License.

FUNCTIONAL-VOXEL METHOD FOR GEOMETRIC DESCRIPTION OF A RADAR DETECTION ZONE

A. B. Yarov¹, A. V. Tolok², A. E. Pankova³, A. E. Chentsov³

¹Moscow State University of Technology "STANKIN", Russia, Moscow, Vadkovsky Ln., 1, 127055
²V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences,
Russia, Moscow, Profsoyuznaya St., 65, 117997
³Zhukov Air and Space Defence Academy, Russia, Tver, Zhigareva St., 50, 170100

The study presents an improved methodology for constructing precise geometric models of detection zones for ground-based radar stations. The primary focus is on integrating a functional-voxel approach. The analytical description of the radiation pattern is defined via piecewise functions with angles $\varepsilon_{\min} = 0.1^{\circ}$; $\varepsilon_{0} = 1.7^{\circ}$; $\varepsilon_{\max} = 4^{\circ}$. The transformation between polar and Cartesian coordinate systems is accounted for, and R-functions are applied to combine the analytical equations used. The modeling incorporates the Pattern Propagation Factor of the Earth using the following computational methods: decomposition of

5×5 matrices into 4×4 submatrices via Laplace's method and construction of local approximating planes with coefficient normalization. The study develops 2D-models with a maximum detection range of 125.5 km, as well as 3D-models. Since the functional-voxel method is employed, base M-shapes of local characteristics are constructed. The simulation accuracy aligns with functional-voxel method readings, meaning the model's values are calculated at each point while maintaining continuity, depending on the scale used.

Keywords: functional-voxel method, M-shape, R-functions, homogeneous vector, local geometric characteristics, radiation pattern, radar simulation.

For citation: Yarov A. B., Tolok A. V., Pankova A. E., Chentsov A. E. Functional-voxel method for geometric description of a radar detection zone. *Omsk Scientific Bulletin.* 2025. No. 4 (196). P. 43–50. DOI: 10.25206/1813-8225-2025-196-43-50. EDN: BIQLJD.

© Yarov A. B., Tolok A. V., Pankova A. E., Chentsov A. E., 2025. The content is available under a Creative Commons Attribution 4.0 License.

Введение

В современных радиотехнических системах точное моделирование диаграмм направленности антенн играет ключевую роль [1-3]. В работе представлен поэтапный анализ формирования диаграммы направленности с использованием функционально-воксельного метода [4] для компьютерного представления. В первую очередь рассматривается базовая диаграмма направленности антенны на открытом пространстве, построенная на основе четырёх функций при заданных, определяющих её, углах [5]. Далее, в модель вводится интерференционный множитель земли (ИМЗ), учитывающий переотражения от поверхности и её неидеальные свойства (комплексный коэффициент отражения Френеля) [6-8]. На заключительном этапе строится трёхмерная модель диаграммы направленности, интегрирующая пространственное распределение поля с учётом интерференционных эффектов.

Моделирование производится в программе на C++ с использованием WinAPI (<windows.h>), которая визуализирует геометрический объект в графическом окне. Реализация включает математическое описание объекта и его отрисовку через функцию SetPixel графической подсистемы Windows GDI (Graphics Device Interface).

1. Построение диаграммы направленности приёмопередающей антенны наземной обзорной радиолокационной станции

Рассмотрим функции, описывающие диаграмму направленности антенны для радиолокационных систем:

$$F(\epsilon) = \begin{cases} 1 - \frac{\epsilon_{\min} - \epsilon}{\epsilon_{\min}}, & \text{при } 0 < \epsilon < \epsilon_{\min} \\ 1, & \text{при } \epsilon_{\min} < \epsilon < \epsilon_{0}, \\ \sin(\epsilon_{0}) \text{cosec} (\epsilon), & \text{при } \epsilon_{0} \leq \epsilon < \epsilon_{\max} \\ 0, & \text{при } \epsilon_{\max} < \epsilon < 90^{\circ} \end{cases}$$

где $F(\epsilon)$ — базовая функция диаграммы направленности радиолокационной станции (РЛС) в вертикальной плоскости, зависящая от угла места, м; ϵ — параметр угла места, рад.; ϵ_{\min} — значение минимального угла места, рад.; ϵ_{0} — значение характеристического угла места, рад.; ϵ_{\max} — значение максимального угла места, рад.

Так как функция задаётся для полярной системы координат, то необходимо перевести её в декартову. В данном случае функция примет следующий вид:

$$\sqrt{x^2 + y^2} - \begin{cases}
1 - \frac{\varepsilon_{\min} \frac{\pi}{180} - \operatorname{atan}\left(\frac{y}{x}\right)}{\operatorname{atan}\left(\frac{y}{x}\right)}, & \text{при } 0 < \operatorname{atan}\left(\frac{y}{x}\right) < \varepsilon_{\min} \\
1, & \text{при } \varepsilon_{\min} < \operatorname{atan}\left(\frac{y}{x}\right) < \varepsilon_{0} \\
\sin\left(\varepsilon_{0} \frac{\pi}{180}\right) \operatorname{cosec}\left(\operatorname{atan}\left(\frac{y}{x}\right)\right), & \text{при } \varepsilon_{0} \le \operatorname{atan}\left(\frac{y}{x}\right) < \varepsilon_{\max} \\
x \tan\left(\varepsilon_{\max} \frac{\pi}{180}\right), & \text{при } \varepsilon_{\max} < \operatorname{atan}\left(\frac{y}{x}\right) < 90^{\circ}
\end{cases}$$

где $\sqrt{x^2+y^2}$ — расстояние от начала координат до границы области, выраженное через формулу преобразования; $\operatorname{atan}\left(\frac{y}{x}\right)$ — угол между положительной осью Ох и радиус-вектором точки аргумента, выраженный через формулу преобразования.

Полученные функции задают необходимую область в неявном виде. Чтобы построить функционально-воксельную модель (ФВ-модель) на компьютере, необходимо привести их к предикатному виду [9].

Для этого приравняем правую часть полученной неявной функции к переменной w. В данном случае для функции можно выделить нулевую, положительную и отрицательную зоны для заданной области значений, чтобы применять их в теоретико-множественных операциях R-функционального моделирования [10-11]. Следовательно, все четыре функции с сохранением условий возможно объединить в одну. Дадим каждой функции последовательные номера w_1 , w_2 , w_3 , w_4 и объединим их в одну с использованием R-функции пересечения:

$$w = w_1 + w_2 + w_3 + w_4 - \sqrt{w_1^2 + w_2^2} - \sqrt{w_3^2 + \left(w_1 + w_2 - \sqrt{w_1^2 + w_2^2}\right)^2} - \sqrt{\frac{w_1 + w_2 + w_3 - \sqrt{w_1^2 + w_2^2} - \sqrt{w_1^2 + w_2^2} - \sqrt{w_3^2 + \left(w_1 + w_2 - \sqrt{w_1^2 + w_2^2}\right)^2}} + w_4^2.$$
 (3)

Для получения компьютерного представления области такой функции обеспечим переход к локальной функции в точке на заданной области в пространстве аргументов, применив инструмент функционально-воксельного моделирования. Получим локальные геометрические характеристики для каждой точки области функции (3):

$$\begin{aligned} a_1 &= y_1(z_2 - z_3) - y_2(z_1 - z_3) - y_3(z_1 - z_2), \\ a_2 &= -(x_1(z_2 - z_3) - x_2(z_1 - z_3) - x_3(z_1 - z_2)), \\ a_3 &= x_1(y_2 - y_3) - x_2(y_1 - y_3) - x_3(y_1 - y_2), \\ a_4 &= -\begin{pmatrix} x_1(y_2 z_3 - y_3 z_2) - \\ -x_2(y_1 z_3 - y_3 z_1) - x_3(y_1 z_2 - y_2 z_1) \end{pmatrix}. \end{aligned} \tag{4}$$

Угловые локальные геометрические характеристики вычисляются нормированием коэффициентов:

$$n_i = \frac{a_i}{\sqrt{\sum_{i=1}^4 a_i^2}}, \quad i = 1...4,$$
 (5)

$$M_i = \frac{P(1+n_i)}{2}, \quad i = 1...4, \quad P = 256,$$
 (6)

где *P* — выбранное разрешение палитры глубины цвета, которое пропорционально точности моделирования. Для представленной задачи достаточно использование 256 оттенков цвета.

Полученное уравнение вида $n_1x+n_2y+n_3z+n_4=0$ является аппроксимирующей функцией или локальным представлением области функции, которое позволяет рассчитывать значение функции z в каждой точке на заданной области [12]. На основании функции (6) на рис. 1 демонстрируется наглядное представление получаемых локальных геометрических характеристик, закодированных в полутоновое значение, а на рис. 2а визуализирован график для зон положительных и отрицательных значений. Рис. 2б представляет собой диаграмму направленности, получаемую классическим расчётом для сравнения.

2. Построение двухмерной зоны обнаружения наземной обзорной РАС с учётом отражений от плоской подстилающей поверхности и рефракции радиоволн

Эффект многолучевого распространения радиоволн, обусловленный переотражениями от земной поверхности, учитывается посредством интерференционного множителя земли $|\dot{\Phi}(\epsilon)|$, представляющего собой комплексную функцию.

Для его определения необходимо учитывать высоту расположения антенны h' (подъема излучателя), коэффициент $\dot{R}_{\rm r}$ (коэффициент Френеля), отражения плоской волны от плоской границы раздела двух сред, угол возвышения точки наблюдения

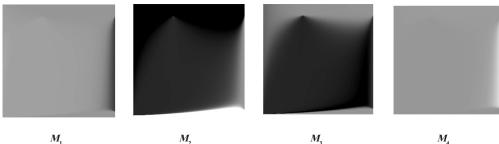


Рис. 1. М-образы, отображающие локальные геометрические характеристики для диаграммы направленности при минимальном значении угла места $\epsilon_{\min} = 0.1^{\circ}$; максимальном значении угла места $\epsilon_{\max} = 4^{\circ}$; значении характеристического угла места $\epsilon_{0} = 1.7^{\circ}$

Fig. 1. M-shapes displaying local geometric characteristics for the radiation pattern at minimum elevation angle $\epsilon_{max}=0.1^{\circ}$; maximum elevation angle $\epsilon_{max}=4^{\circ}$; characteristic elevation angle $\epsilon_{0}=1.7^{\circ}$

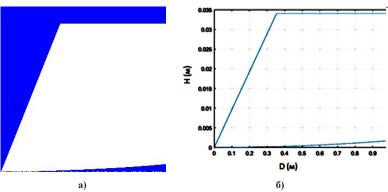


Рис. 2. Диаграмма направленности антенны в полярной системе координат:

а — график зон положительных и отрицательных значений; б — диаграмма
направленности, получаемая классическим расчётом для сравнения
Fig. 2. Antenna radiation pattern in polar coordinate system:

a — a map of positive and negative value zones; б — a radiation pattern obtained by
classical calculation for comparison

ε (воздушного объекта), вид поляризации радиоволны и характера подстилающей поверхности.

При построении диаграмм направленности или расчёте напряжённости поля всегда используется модуль интерференционного множителя, поэтому диаграмма направленности антенны в вертикальной плоскости с учетом отражений от плоской подстилающей поверхности и дальности обнаружения рассчитывается в соответствии с выражением:

$$Dn(\varepsilon) = r_{\text{max}} \cdot F(\varepsilon) \cdot |\dot{\Phi}(\varepsilon)|, \tag{7}$$

где $r_{ ext{max}}$ — дальность обнаружения, м; $F(\epsilon)$ — базовая функция диаграммы направленности РАС в вертикальной плоскости, зависящая от угла места по формуле (1), м.

Интерференционный множитель земли для горизонтально поляризованной плоской волны вычисляется следующей функцией:

$$\left|\dot{\Phi}(\theta)\right| = \sqrt{1 + \left|\dot{R}_{\scriptscriptstyle \Gamma}\right|^2 + 2 \cdot \left|\dot{R}_{\scriptscriptstyle \Gamma}\right| \cdot \left(2k_{\scriptscriptstyle 0} \cdot h' \cdot \sin(\epsilon) + \beta_{\scriptscriptstyle \Gamma}\right)}, \ (8)$$

где $k_{_0}$ — волновое число; λ — длина волны; $\dot{R}_{_{
m r}}$ — коэффициент отражения для горизонтальной поляризации электромагнитной волны; $\beta_{_{\!\scriptscriptstyle T}}$ — аргумент коэффициента $\dot{R}_{\rm r}$.

Коэффициент отражения для горизонтальной поляризации плоской волны определяется в соответствии с выражением (индекс 2 соответствует подстилающей поверхности, а индекс 1 — атмосdepe):

$$\dot{R}_{r} = \frac{\dot{\mu}_{a2} \dot{k}_{1} \sin(\varepsilon) - \dot{\mu}_{a1} \sqrt{\dot{k}_{2}^{2} - \dot{k}_{1}^{2} (\cos(\varepsilon))^{2}}}{\dot{\mu}_{a2} \dot{k}_{1} \sin(\varepsilon) + \dot{\mu}_{a1} \sqrt{\dot{k}_{2}^{2} - \dot{k}_{1}^{2} (\cos(\varepsilon))^{2}}}, \tag{9}$$

где $\dot{k}=\omega\sqrt{\dot{\epsilon}_a\cdot\mu_a}$ — комплексный коэффициент фазы; $\omega=2\pi\,\frac{3\cdot10^8}{\lambda}$ — круговая частота, рад/с;

Рис. 3. Диаграмма направленности зон отрицательных и положительных значений используемой функции (10) Fig. 3. Radiation pattern showing zones of positive and negative values of the applied function (10)

 λ — длинна волны, м; $\dot{\epsilon}_a=\epsilon_a-j\cdot\frac{\sigma}{\omega}$ — комплексная абсолютная диэлектрическая проницаемость среды; $\varepsilon_a = \varepsilon_0 \cdot \varepsilon$ — абсолютная диэлектрическая проницаемость среды; є — относительная диэлектрическая проницаемость среды; $\epsilon_0 = \frac{1}{36 \cdot \pi} \cdot 10^{-9}$ электрическая постоянная вакуума; μ – абсолютная магнитная проницаемость среды; $\mu_a = \mu_0 \cdot \mu$ относительная магнитная проницаемость среды; $\mu_0 = 4 \cdot \pi \cdot 10^{-7}$ — магнитная постоянная вакуума; σ — удельная проводимость среды.

Значение максимальной дальности обнаружения воздушного объекта с заданными величинами вероятностей правильного обнаружения и ложной тревоги воздушного объекта в РАС с потерями определяется отдельно. В качестве примера принято значение $r_{\text{max}}=125\,500$ м. Итоговый вид функций:

$$\begin{cases} \left(1 - \frac{\varepsilon_{\min}}{180} \frac{\pi}{180} - \operatorname{atan}\left(\frac{y}{x}\right) - \sqrt{x^2 + y^2}\right) \cdot r_{\max} \cdot |\dot{\Phi}(\varepsilon)|, & \text{при } 0 < \operatorname{atan}\left(\frac{y}{x}\right) < \varepsilon_{\min} \\ \left(1 - \sqrt{x^2 + y^2}\right) \cdot r_{\max} \cdot |\dot{\Phi}(\varepsilon)|, & \text{при } \varepsilon_{\min} < \operatorname{atan}\left(\frac{y}{x}\right) < \varepsilon_{0} \\ \left(\sin\left(\varepsilon_{0} \frac{\pi}{180}\right) \operatorname{cosec}\left(\operatorname{atan}\left(\frac{y}{x}\right)\right) - \sqrt{x^2 + y^2}\right) \cdot r_{\max} \cdot |\dot{\Phi}(\varepsilon)|, & \text{при } \varepsilon_{0} \leq \operatorname{atan}\left(\frac{y}{x}\right) < \varepsilon_{\max} \\ x \tan\left(\varepsilon_{\max} \frac{\pi}{180}\right) - y, & \text{при } \varepsilon_{\max} < \operatorname{atan}\left(\frac{y}{x}\right) < 90^{\circ} \end{cases} \end{cases}$$

Вычислительная реализация модели разрабатывается в соответствии с методологией, изложенной в разделе 1.

Математической основой является последовательное применение уравнений (3) – (5) для расчёта в соответствии с [12].

На рис. З показана диаграмма направленности с изменёнными зонами положительных и отрицательных значений в сравнении с рис. 2.

Учёт ИМЗ привёл визуализацию диаграммы направленности к более привычному виду

Результаты локальных геометрических характеристик представлены на рис. 4.

3. Построение трехмерной ФВ-модели зоны обнаружения наземной обзорной РЛС с учётом отражений от плоской подстилающей поверхности и рефракции радиоволн

Для построения модели зоны обнаружения целесообразно применить метод вращения. В качестве оси вращения выбирается ось X, после че<u>го аргу</u>мент Y заменяется на радиус вращения $\sqrt{x^2 + y^2}$. Учитывая, что исходная функция уже содержала единичную ось Z при переходе к однородным координатам, необходимо выполнить переход в пространство более высокой размерности. В результате преобразований итоговые функции принимают следующий вид:

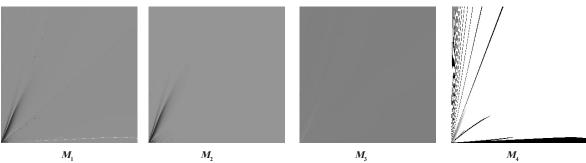


Рис. 4. M-образы, отображающие локальные геометрические характеристики для диаграммы направленности при значении угла места $\varepsilon_{\min}=0,1^\circ; \, \varepsilon_{\max}=4^\circ; \, \varepsilon_0=1,7^\circ$ аналитического уравнения (10) Fig. 4. M-shapes displaying local geometric characteristics for the radiation pattern at: elevation angle $\varepsilon_{\min}=0.1^\circ; \, \varepsilon_{\max}=4^\circ; \, \varepsilon_0=1.7^\circ$ of the analytical equation (10)

$$\begin{cases} 1 - \frac{\varepsilon_{\min}}{180} \frac{\pi}{180} - \operatorname{atan} \left(\frac{z}{\sqrt{x^2 + y^2}} \right) \\ \operatorname{atan} \left(\frac{z}{\sqrt{x^2 + y^2}} \right) - \sqrt{\sqrt{x^2 + y^2}^2 + z^2} \right) \times \\ \times r_{\max} \cdot |\dot{\Phi}(\varepsilon)|, & \operatorname{при} \ 0 < \operatorname{atan} \left(\frac{z}{\sqrt{x^2 + y^2}} \right) < \varepsilon_{\min} \\ \left\{ \left(1 - \sqrt{\sqrt{x^2 + y^2}^2 + z^2} \right) \cdot r_{\max} \cdot |\dot{\Phi}(\varepsilon)|, & \operatorname{при} \ \varepsilon_{\min} < \operatorname{atan} \left(\frac{z}{\sqrt{x^2 + y^2}} \right) < \varepsilon_0 \\ \left(\sin \left(\varepsilon_0 \frac{\pi}{180} \right) \operatorname{cosec} \left(\operatorname{atan} \left(\frac{z}{\sqrt{x^2 + y^2}} \right) \right) - \sqrt{\sqrt{x^2 + y^2}^2 + z^2} \right) \times \\ \times r_{\max} \cdot |\dot{\Phi}(\varepsilon)|, & \operatorname{при} \ \varepsilon_0 \le \operatorname{atan} \left(\frac{z}{\sqrt{x^2 + y^2}} \right) < \varepsilon_{\max} \\ \times r_{\max} \cdot |\dot{\Phi}(\varepsilon)|, & \operatorname{при} \ \varepsilon_{\max} < \operatorname{atan} \left(\frac{z}{\sqrt{x^2 + y^2}} \right) < \theta \rangle \end{cases}$$

При построении трёхмерной зоны и при увеличении размерности функции необходимо брать не три, а четыре точки для нахождения локальной функции. Используем применяемую ранее методику и получаем локальные геометрические характеристики для каждой точки области функции (3) при условии использования аналитических уравнений, указанных в (10).

Разложим определитель для получения коэффициентов уравнения плоскости. Для матрицы 5×5 используется метод Лапласа.

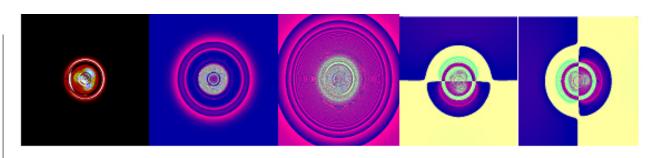
Основные коэффициенты уравнения плоскости получают следующий вид:

$$a1 = y1 \cdot Ma11 - z1 \cdot Ma12 + u1 \cdot Ma13 - Ma14,$$

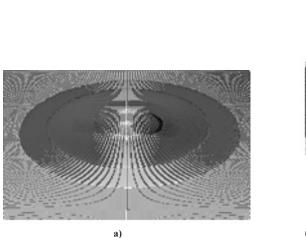
 $a2 = -(x1 \cdot Ma21 - z1 \cdot Ma22 + u1 \cdot Ma23 - Ma24),$
 $a3 = x1 \cdot Ma31 - y1 \cdot Ma32 + u1 \cdot Ma33 - Ma34,$ (12)
 $a4 = -(x1 \cdot Ma41 - y1 \cdot Ma42 + z1 \cdot Ma43 - Ma44),$
 $a5 = x1 \cdot Ma51 - y1 \cdot Ma52 + z1 \cdot Ma53 - u1 \cdot Ma54.$

После нормирования полученных коэффициентов (12) по имеющейся формуле (5) получаем уравнение вида $n_1\mathbf{x} + n_2\mathbf{y} + n_3\mathbf{z} + n_4\mathbf{u} + n_5 = 0$. Оно является локальным представлением области функции трехмерной модели на компьютере.

На рис. 5 показано одно из сечений положительных и отрицательных значений по оси Z получаемой модели. В отличие от прошлых вариантов, в данном случае диаграмма направленности представлена в горизонтальной плоскости для лучшей


видимости результата получаемой геометрической модели.

На рис. 6 представлены графические образы локальных геометрических характеристик [13]. Количество характеристик увеличилось в сравнении с рис. 4, так как расчёт ведётся для трёхмерного объекта.


Итоговый вариант модели показан на рис. 7.

Puc. 5. Визуализация сечения области положительных и отрицательных значений модели
Fig. 5. Cross-section visualization of positive and negative values of the model

 M_1 M_2 M_3 M_4 M_5 Puc. 6. М-образы в RGB-формате (16777215 оттенков цвета), отображающие локальные геометрические характеристики для 3D-модели в одном из сечений при значении угла $\varepsilon_{\min}=0,1^\circ; \, \varepsilon_{\max}=4^\circ; \, \varepsilon_0=1,7^\circ$ Fig. 6. M-shapes in RGB-format (16777215 colour shades), displaying local geometric characteristics for the 3D-model in one cross-section at angle $\varepsilon_{\min}=0.1^\circ; \, \varepsilon_{\max}=4^\circ; \, \varepsilon_0=1.7^\circ$

Puc. 7. Визуализация модели зоны обнаружения РЛС: а — вид сверху; б — вид справа Fig. 7. Visualization of the radar detection zone model: а — top view; б — right-side view

Заключение

Проведённое исследование демонстрирует эффективность применения функционально-воксельного метода для моделирования диаграмм направленности на компьютере.

Базовая диаграмма направленности, построенная на основе локальных уравнений, послужила отправной точкой в построении радиолокационной модели.

Учёт интерференционного множителя земли и радиуса дальности позволил выявить характерные минимумы и максимумы излучения, обусловленные взаимодействием прямого и отражённого лучей.

3D-модель наглядно продемонстрировала пространственное распределение поля, включая азимутальные и угломестные зависимости.

Полученные данные могут быть использованы для:

- оптимизации размещения антенн над реальным рельефом;
 - прогнозирования зон покрытия в радиосвязи;
- анализа помех в сложных электромагнитных условиях.

Перспективным направлением исследования являются построение зоны обнаружения с учётом влияния Земли и кривизны земной поверхности.

Список источников / References

1. Сухоруков А. П., Бабушкин А. К., Михайлов Е. В. [и др.]. Возможности систем геопространственного моделирова-

ния в задачах прогнозирования распространения радиоволн и электромагнитной экологии // Радиолокация и радиосвязь: III Всерос. конф. 2009. С. 630-640.

Sukhorukov A. P., Babushkin A. K., Mikhaylov E. V. [et al.]. Vozmozhnosti sistem geoprostranstvennogo modelirovaniya v zadachakh prognozirovaniya rasprostraneniya radiovoln i elektromagnitnoy ekologii [Capabilities of geospatial modeling systems in the problems of radio wave propagation forecasting and electromagnetic ecology]. *Radiolokatsiya i Radiosvyaz'*. P. 630–640. (In Russ.).

2. Татарский Б. Г., Ясенцев Д. А., Сурков А. А. Формирование радиолокационных изображений в некогерентных многопозиционных радиолокационных системах // Вопросы электромеханики. Труды ВНИИЭМ. 2024. Т. 198, № 1. С. 47 — 53. EDN: BAYQMP.

Tatarsky B. G., Yasentsev D. A., Surkov A. A. Formirovaniye radiolokatsionnykh izobrazheniy v nekogerentnykh mnogopozitsionnykh radiolokatsionnykh sistemakh [Formation of radar images in incoherent multi-position radar systems]. Voprosy elektromekhaniki. Trudy VNIIEM. *Electromechanical Matters. VNIIEM Studies.* 2024. Vol. 198, no. 1. P. 47 – 53. EDN: BAYQMP. (In Russ.).

3. Дорогов А. Ю., Яшин А. И. Программный комплекс моделирования пакетных радиосетей КВ-диапазона // Наукоемкие технологии в космических исследованиях Земли. 2020. Т. 12, № 6. С. 26—37. DOI: 10.36724/2409-5419-2020-12-6-26-37. EDN: QOBFCL.

Dorogov A. Yu., Yashin A. I. Programmnyy kompleks modelirovaniya paketnykh radiosetey KV-diapazona [Software package for modeling HF-band packet radio networks]. Naukoyemkiye tekhnologii v kosmicheskikh issledovaniyakh Zemli. High Tech in Earth Space Research. 2020. Vol. 12, no. 6. P. 26-37. DOI: 10.36724/2409-5419-2020-12-6-26-37. EDN: QOBFCL. (In Russ.).

4. Толок А. В. Функционально-воксельный метод в компьютерном моделировании / под ред. С. Н. Васильева. Москва: Физматлит, 2016. 112 с. ISBN 978-5-9221-1680-0.

Tolok A. V. Funktsional'no-voksel'nyy metod v komp'yuternom modelirovanii [Functional-Voxel method in computer modeling] / ed. by S. N. Vasilyev. Moscow, 2016. 112 p. ISBN 978-5-9221-1680-0. (In Russ.).

Теоретические основы радиолокации / под ред.
 Д. Ширмана. Москва: Советское радио, 1970. 560 с.

Teoreticheskiye osnovy radiolokatsii [Theoretical radar foundations] / ed. by Ya. D. Shirman. Moscow, 1970. 560 p. (In Russ.).

6. Бердышев В. П., Гарин Е. Н., Фомин А. Н. [и др.]. Радиолокационные системы / под общ. ред. В. П. Бердышева. Красноярск: Сиб. федер. ун-т, 2011. 400 с. ISBN 978-5-7638-2479-7.

Berdyshev V. P., Garin E. N., Fomin A. N. [et al.]. Radiolokatsionnyye sistemy [Radar systems] / ed. by V. P. Berdyshev. Krasnoyarsk, 2011. 400 p. ISBN 978-5-7638 2479-7. (In Russ.).

7. Справочник по радиолокации. В 2 кн. / под ред. М. И. Сколника; пер. с англ. В. С. Вербы. Москва: Техносфера, 2014. Кн. 1. 672 с. ISBN 978-5-94836-381-3.

Spravochnik po radiolokatsii. V 2 kn. [Handbook of radar systems]. In 2 vols. / ed. by M. I. Skolnik; trans. from Engl. V. S. Verba. Moscow, 2014. Bk. 1. 672 p. ISBN 978-5-94836-381-3. (In Russ.).

8. Тяпкин В. Н., Фомин А. Н., Гарин Е. Н. [и др.]. Основы построения радиолокационных станций радиотехнических войск / под общ. ред. В. Н. Тяпкина. 2-е изд., перераб. Красноярск: Сиб. федер. ун-т, 2016. 536 с. ISBN 978-5-7638-3410-9.

Tyapkin V. N., Fomin A. N., Garin E. N. [et al.]. Osnovy postroyeniya radiolokatsionnykh stantsiy radiotekhnicheskikh voysk [Fundamentals of radar systems for radio engineering troops] / ed. by V. N. Tyapkin. 2nd ed., revised. Krasnoyarsk, 2016. 536 p. ISBN 978-5-7638-3410-9. (In Russ.).

9. Толок А. В. Применение воксельных моделей в процессе автоматизации математического моделирования // Автоматика и телемеханика. 2009. № 6. С. 167—180. EDN: MWKIBL.

Tolok A. V. Primeneniye voksel'nykh modeley v protsesse avtomatizatsii matematicheskogo modelirovaniya [Using voxel models in automation of mathematical modeling]. *Avtomatika i Telemekhanika.* 2009. No. 6. P. 167–180. EDN: MWKIBL. (In Russ.).

10. Рвачев В. Л. Теория R-функций и некоторые ее приложения: моногр. Киев: Наукова думка, 1982. 552 с.

Rvachev V. L. Teoriya R-funktsiy i nekotoryye eye prilozheniya [Theory of R-functions and some of its applications]. Kyiv, 1982. 552 p. (In Russ.)

11. Максименко-Шейко К. В., Мацевитый А. М., Толок А. В., Шейко Т. И. R-функции и обратная задача аналитической геометрии в трехмерном пространстве // Информационные технологии. 2007. № 10. С. 23-32. EDN: IJQBMN.

Maksimenko-Sheyko K. V., Matsevityy A. M., Tolok A. V., Sheyko T. I. R-funktsii i obratnaya zadacha analiticheskoy geometrii v trekhmernom prostranstve [R-functions and inverse problem of analytic geometry in three-dimensional space]. Informationnyye tekhnologii. *Information Technologies.* 2007. No. 10. P. 23–32. (In Russ.).

12. Толок А. В. Функционально-воксельный метод в компьютерном моделировании / под ред. С. Н. Васильева. Москва: Физматлит, 2016. 112 с. ISBN 978-5-9221-1680-0.

Tolok A. V. Funktsional'no-voksel'nyy metod v komp'yuternom modelirovanii [Functional-voxel method in computer modeling] / ed. by S. N. Vasilyev. Moscow, 2016. 112 p. ISBN 978-5-9221-1680-0. (In Russ.).

13. Толок А. В. Графические образы-модели в информационных технологиях // Прикладная информатика. 2009. № 4. С. 31 — 40. EDN: KWMTBP.

Tolok A. V. Graficheskiye obrazy-modeli v informatsionnykh tekhnologiyakh [Graphic image-models in information technologies]. Prikladnaya informatika. *Applied Informatics.* 2009. No. 4. P. 31 – 40. EDN: KWMTBP. (In Russ.).

ЯРОВ Алексей Борисович, аспирант кафедры «Инженерная графика» Московского государственного технологического университета «СТАНКИН» (МГТУ «СТАНКИН»), г. Москва.

Адрес для переписки: ab.yarov@yandex.ru

ТОЛОК Алексей Вячеславович, доктор технических наук, профессор (Россия), заведующий кафедрой «Инженерная графика» МГТУ «СТАНКИН», г. Москва; главный научный сотрудник лаборатории 18 Института проблем управления им. В. А. Трапезникова РАН, г. Москва.

SPIN-код: 9269-9260

ORCID: 0000-0002-7257-9029 AuthorID (SCOPUS): 28268055700

ResearcherID: V-7594-2019

Адрес для переписки: tolok_61@mail.ru

ПАНКОВА Анастасия Евгеньевна, адъюнкт кафедры «Автоматизированные системы управления (и связи)» Военной академии воздушно-космической обороны имени Маршала Советского Союза Г. К. Жукова, г. Тверь.

Адрес для переписки: nastya-pankova1998.1998@mail.ru

ЧЕНЦОВ Александр Евгеньевич, доктор военных наук, старший научный сотрудник Научно-исследовательского центра (ПВО-ПРО) Военной академии воздушно-космической обороны имени Маршала Советского Союза Г. К. Жукова, г. Тверь.

Прозрачность финансовой деятельности: авторы не имеют финансовой заинтересованности в представленных материалах и методах. Конфликт интересов отсутствует.

Статья поступила в редакцию 03.06.2025; одобрена после рецензирования 19.07.2025; принята к публикапии 08.10.2025.

YAROV Aleksey Borisovich, Postgraduate of the Engineering Graphics Department, Moscow State University of Technology "STANKIN" (MSUT "STANKIN"), Moscow.

 $Correspondence\ address:\ ab.yarov@yandex.ru$

TOLOK Aleksey Vyacheslavovich, Doctor of Technical Sciences, Professor, Head of the Engineering Graphics Department, MSUT "STANKIN", Moscow; Chief Researcher at the Laboratory 18, V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow.

SPIN-code: 9269-9260 ORCID: 0000-0002-7257-9029 AuthorID (SCOPUS): 28268055700

ResearcherID: V-7594-2019

Correspondence address: tolok_61@mail.ru

PANKOVA Anastasiya Evgenyevna, Adjunct of the Automated Control (and Communication) Systems

Department, Zhukov Air and Space Defence Academy, Tver

Correspondence address: nastya-pankova 1998. 1998@ mail.ru

CHENTSOV Aleksandr Evgenyevich, Doctor of Military Sciences, Senior Researcher at the Research Center (PVO-PRO), Zhukov Air and Space Defence Academy, Tver.

Financial transparency: the authors have no financial interest in the presented materials or methods. There is no conflict of interest.

The article was submitted 03.06.2025; approved after reviewing 19.07.2025; accepted for publication 08.10.2025.