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КОНСТРУИРОВАНИЕ PH-КРИВОЙ ПРОСТРАНСТВА 
ПО ОРТОГОНАЛЬНЫМ ПРОЕКЦИЯМ ЕЁ ГОДОГРАФА

К. Л. Панчук, Т. М. Мясоедова, Е. В. Любчинов

Омский государственный технический университет, Россия, 644050, г. Омск, пр. Мира, 11

В современном геометрическом моделировании известен класс плоских и пространственных  
PH-кривых (кривых пифагорова годографа), получивших теоретическое обоснование математиком 
Rida T. Farouki в 2007 г. PH-кривые обладают уникальным свойством, имеющим важное значение  
в решении множества разноплановых практических задач, а именно «параметрическая скорость» этих 
кривых, т. е. производная от длины дуги по параметру кривой является полиномиальной (или раци-
ональной) функцией параметра. Данное свойство обусловлено тем, что координатные компоненты 
годографа PH-кривой представляют собой элементы пифагорова (n+1)-кортежа координатных по-
линомов.

Благодаря отмеченному свойству PH-кривые востребованы в решениях различных практических 
задач: генерация траекторий беспилотных летательных аппаратов, оптимизация пути мобильных робо-
тов, расчёт оптимальных по форме и по длине сегментов оси автомобильной дороги и др. В теории 
пространственных PH-кривых разработаны алгоритмы их аналитического конструирования. В указан-
ном исследовании предложен подход к конструированию этих кривых, основанный на теории плоских 
PH-кривых и реализуемый последовательным конструированием образов — проекций пространствен-
ных PH-кривых на двух координатных плоскостях. Решение пространственной задачи конструирования 
сводится к решениям двух задач последовательного конструирования на координатных плоскостях.

Приведены числовые примеры, демонстрирующие работоспособность предлагаемого подхода. 
При этом алгоритмы вычислений более просты, чем в случае известного пространственного анали-
тического подхода. В направлении развития предложенного подхода приведены числовые примеры 
конструирования пространственной составной PH-кривой по гладкости C1. 

Ключевые слова: PH-кривые, пифагоровы годографы, полиномы, ортогональная проекция, со-
ставная кривая, гладкость стыковки.
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CONSTRUCTION OF A PH-CURVE OF SPACE 
BY ORTHOGONAL PROJECTIONS OF ITS HODOGRAPH

K. L. Panchuk, T. M. Myasoedova, E. V. Lyubchinov

Omsk State Technical University, Russia, Omsk, Mira Ave., 11, 644050

In modern geometric modeling, a class of plane and spatial PH-curves (рythagorean hodograph curves) 
is known, which were theoretically substantiated by mathematician Rida T. Farouki in 2007. PH-curves have 
a unique property that is important in solving many different practical problems, namely: the "parametric 
speed" of these curves, i.e. the derivative of the arc length with respect to the curve parameter, is a 
polynomial (or rational) function of the parameter. This property is due to the fact that the coordinate 
components of the hodograph of the PH–curve are elements of the Pythagorean (n+1)-tuple of coordinate 
polynomials. 
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Due to this property, PH-curves are in demand in solving various practical problems: generating trajectories 

for UAVs (unmanned aerial vehicles), optimizing the path of mobile robots, calculating segments of the axis 
of a road that are optimal in shape and length, etc. etc. In the theory of spatial PH-curves, algorithms for 
their analytical construction have been developed. In this paper, an approach to constructing these curves 
is proposed, based on the theory of plane PH-curves and implemented by sequentially constructing images-
projections of spatial PH-curves on two coordinate planes. That is, solving the spatial construction problem 
is reduced to solving two problems of sequential construction on coordinate planes. 

Numerical examples are given that demonstrate the efficiency of the proposed approach. At the same 
time, the calculation algorithms are simpler than in the case of the known spatial analytical approach.  
In the direction of developing the proposed approach, numerical examples of constructing a spatial composite 
PH-curve by smoothness C1 are given.

Keywords: PH-curves, рythagorean hodographs, polynomials, orthogonal projection, composite curve, 
smoothness of connection.

For citation: Panchuk K. L., Myasoedova T. M., Lyubchinov E. V. Construction of a PH-curve of space 
by orthogonal projections of its hodograph. Omsk Scientific Bulletin. 2025. No. 4 (196). P. 5–11. DOI: 
10.25206/1813-8225-2025-196-5-11. EDN: WRXPUZ.

© Panchuk K. L., Myasoedova T. M., Lyubchinov E. V., 2025.
  The content is available under a Creative Commons Attribution 4.0 License.

Введение
Кривые пифагорова годографа (PH-кривые) ха-

рактеризуются особым свойством, заключающим-
ся в том, что их «параметрическая скорость» —  
производная длины дуги по параметру кривой — 
является полиномиальной (или рациональной) 
функцией параметра [1–3]. Эта отличительная 
особенность, возникающая при априорном постро-
ении компонентов годографа полиномиальных или 
рациональных кривых в евклидовом пространстве, 
как элементов пифагоровых кортежей полиномов, 
придаёт PH-кривым множество полезных с вычис-
лительной точки зрения свойств. Например, вычис-
ление их длин дуг [4], расчёт оптимальной траек-
тории путём минимизации функционала энергии 
кривизны [5, 6], конструирование эквидистантных 
(параллельных) кривых [1, с. 389] — решение этих  
и множества других практических задач выполня-
ется точным способом, т. е. без применения при-
ближенных вычислений. 

Обширные практические применения  
PH-кривых представлены в работе [7]. Отметим до-
полнительно ещё несколько практических областей, 
в которых применение PH-кривых востребовано 
благодаря их уникальным полезным свойствам: ге-
нерация траекторий беспилотных летательных ап-
паратов (БПЛА) [8–11], проектирование формы 
манипуляторов и планирование пути мобильных 
роботов [12, 13].

Теоретические основания PH-кривых наибо-
лее полно и глубоко изложены в работе Rida T. 
Farouki [1, с. 369–680], одного из основных теоре-
тиков-разработчиков этого класса кривых. В теории  
PH-кривых различают две их разновидности: плоские  
и пространственные PH-кривые.

Для понимания сути, новизны и полезности 
представленных в настоящей работе авторских 
результатов исследований в области PH-кривых 
приведём основные теоретические сведения, каса-
ющиеся этих кривых. На наш взгляд, это необхо-
димо, поскольку основные публикации по теории  
и практическим применениям PH-кривых — это 
зарубежные публикации. В отечественных публи-
кациях содержится крайне скудная информация  
об этом классе кривых. 

Основные положения 
теории плоской PH-кривой
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 — плоская регулярная 
полиномиальная кривая, при этом 
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, 
где проекции кривой представляет собой полиномы 
порядка ≤ n:

                                                         .

Годограф регулярной кривой 
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 представляет 
собой векторное поле, построенное по множеству 
касательных векторов в точках кривой.

2.  Кривая 
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 будет PH-кривой, если существует 
полином σ(t) такой, что

 .                   (1)

В этой связи для PH-кривой можно записать
 

.                   (2)

3.  Длина дуги PH-кривой вычисляется точно, т. е.  
без квадратурных правил:

 .              (3)

4.  Теорема о пифагоровом условии для плоско-
сти [1, с. 382]. Пифагорово условие 

 (4)

удовлетворяется полиномами a(t), b(t) и c(t), если  
и только если существуют полиномы u(t), v(t) и w(t) 
такие, что 
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Из теоремы следует, что годограф плоской  
PH-кривой может быть выражен в виде:

 (6)

Полагаем, что в (5), а следовательно, и в (6), по-
линомы u(t) и v(t) действительные взаимно простые, 
т. е. НОД (u(t), v(t))=const. Из всех возможных слу-
чаев рассматриваются те, в которых полиномы u(t), 
v(t) и w(t) — не нулевые и u(t), v(t) одновременно не 
представляют собой const.

5.  Плоская PH-кривая 
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 может 
быть получена [1, с. 405–422] на основе комплекс-
ного полинома δ(t) = u(t) + iv(t) отождествлением 
x’(t) и y’(t) c действительной и мнимой частью по-
линома

                                                     ,

т. е. 
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6.  Замечание. Если λ–deg(w(t)) и μ =  
=max(deg u(t), deg v(t)), где deg — «порядок», то 
PH-кривая, полученная интегрированием годографа 
(6) имеет порядок n = λ+2μ+1 [1, с. 383]. Обыч-
но принимают w(t)=1 и получают примитивный 
годограф. Если max deg(u(t), v(t))=m, то плоская  
PH-кривая имеет нечётный порядок n=2m + 1. Та-
ким образом, для плоской PH-кривой в области ве-
щественных чисел имеет место соответствие

                                    (7)

Основные положения 
теории пространственной PH-кривой

1.  Подобно теореме о пифагоровом условии 
для плоской PH-кривой, существует теорема о та-
ком же условии для пространственной PH-кривой 
[1, с. 462]. На основании этой теоремы проекци-
онные компоненты годографа пространственной  
PH-кривой в области вещественных чисел пред-
ставляются следующим образом:

                                                        (8)

где 
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, u(t), v(t), p(t), q(t) —
действительные взаимно простые полиномы. Когда 
эти полиномы имеют порядок не более μ, то про-
странственная PH-кривая, получаемая интегрирова-
нием годографа (8), имеет нечётный порядок n = 
=2m + 1.

2.  Длина дуги пространственной PH-кривой вы-
числяется точно, без квадратурных правил:

 .              (9)

3.  Пространственная PH-кривая может быть 
определена на основе кватернионного полинома [1, 
с. 469–483]:
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 = u(t)+ v(t) ∙ i+ p(t) ∙ j+ q(t) ∙ k,       (10)

выраженного в кватернионном базисе (1, i, j, k) че-
рез произведение
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* (t)= u(t)–v(t) ∙ i –p(t) ∙ j –q(t) ∙ k — сопря-
жённый к 
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(t) кватернион. Полученная в резуль-
тате интегрирования пространственная PH-кривая 

 
 

),()()()()(

,)()()()(2)(

,)()()()(2)(

),()()()()(

2222

2222

tqtptvtut

tptutqtvtz

tptvtqtuty

tqtptvtutx







σ

 

)()()()( 222 tztytxt σ  

dttdttrs
b

a

b

a
  )()( σ  

k)(j)(i)()(  tqtptvtu  

( )t  

 )(),(),()( tztytxtr   

 )(),(),()( tztytxtr   

 ,,0 nttt   

0)(  tr  

 )(),(),()(: tztytxtrq   

)()()(: 222 ttytxqxy σ  

)()()( 222 ttztq z μσ:   

)()()( 22 tvtutx  ,  

)()(2)( tvtuty  ,  

)()()( 22 tvtut σ , 

)()()( 22 tbtat σ ,  

)()(2)( tbtatz  ,  

)()()( 22 tbtat μ  

ntr )( , 

)()()( 222 ttytx σ  

)()()( 222 ttzt μσ   

 удовлетворяет условию x’2(t) + 
+y’2(t) + z’2(t) = σ2(t), где полиномы x’(t), y’(t), z’(t) 
и σ(t) имеют вид (8).

Анализ указанных выше в виде ссылок публика-
ций по PH-кривым позволяет сделать вывод о том, 
что математический аппарат пространственных  
PH-кривых гораздо сложнее, чем в случае плоских 
PH-кривых. В работе [14] исследуется решение зада-
чи построения на плоскостях проекций PH-образов 
заданной пространственной PH-кривой. Обстоя-
тельное решение этой задачи, которую можно отне-
сти к классу прямых задач конструктивной геоме-
трии (построение образов заданных геометрических  
объектов евклидова пространства на плоскостях 
проекций), отсутствует. В этой связи возникает 
вопрос о возможности сведения решения задачи 
пространственного конструирования PH-кривой  
к последовательному решению двух задач кон-
струирования на плоскостях проекций с опорой  
на математический аппарат плоских PH-кривых. 
Последовательное решение этих двух задач по су-
ществу представляет собой решение обратной зада-
чи конструктивной геометрии (восстановление про-
странственного геометрического образа по двум его 
прообразам на плоскостях проекций). Примером 
решения обратной задачи конструктивной геоме-
трии, применительно к кривым линиям, являются 
работы [15, 16], в которых дано математическое ре-
шение задачи конструирования пространственной 
кривой линии по её ортогональным проекциям. 

Цель исследования — конструирование  
PH-кривой пространства по ортогональным проек-
циям её пифагорова годографа.

Ортогональные проекции пифагорова годографа 
пространственной регулярной кривой

Рассмотрим и докажем утверждение, позволяю-
щее конструировать пространственную PH-кривую 
по ее годографу, ортогональные проекции которого 
обладают пифагоровым свойством.

Утверждение. Пусть полиномиальная кри-
вая  
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 будет PH-кривой. 
Геометрическое доказательство. Очевидно, 

условиями 1) и 2) последовательно формируются 
две пифагоровы тройки полиномов (рис. 2), при-
водящие к итоговому полиному μ(t). На основании 
определения PH-кривой [1]: полиномиальная кри-
вая   
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 будет PH-кривой, если n координат-
ных компонентов годографа 
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 являются элемен-
тами пифагорова (n+1)-кортежа полиномов, сумма 
квадратов которых совпадает с квадратом другого 
полинома μ(t). В соответствии с этим определе-
нием делаем вывод, что исходная кривая 
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 есть  
PH-кривая.

Алгебраическое доказательство. В соответствии 
с геометрическим доказательством имеют место 
быть две пифагоровы тройки из параметрических 
полиномов: первая — 
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, реали-
зуемая при выполнении условий 1) и вторая —  
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                                                                     (11)

где k(t) ≠ 0, представляет собой ненулевой полином, 
в частном случае — действительное число, не рав-
ное нулю. Покажем, что x’2(t)+y’2(t)+z’2(t) = μ2(t), 
в этом случае есть полный квадрат. Действитель-
но, суммируя квадраты компонент годографа 
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с учётом того, что 

    
получаем полный квадрат 
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Результаты вычислительных экспериментов
Пример 1. Даны касательные вектора 
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 в начальной A(2,2) и конечной точ-
ках горизонтальной проекции искомой PH-кривой;  
t
1 
= 0,01 и t

2
 = 1 — граничные значения параметра 

t в этих точках (рис. 3). Требуется построить сег-
мент пространственной PH-кривой.

Алгоритм решения.
1. В соответствии с условиями задачи могут быть 

выбраны только параметрические полиномы перво-
го порядка: 
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. На-
ходятся значения их коэффициентов u

0
, v

0
, u

1
, v

1
  

на основе решения системы квадратичных урав- 
нений: 

 
Вводятся в уравнения системы заданные началь-

ные и конечные значения параметра t и заданные 
значения проекций векторов 
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, что приводит 
к следующей системе квадратичных уравнений:

 

Рис. 1. Годограф g исходной кривой и его
 проекционные образы gxy и gσz в плоскостях проекций 

Oxy и Oσz соответственно
Fig. 1. Hodograph g of the original curve and its projection 
images gxy and gσz in the projection planes of Oxy and Oσz, 

respectively

Рис. 2. Схема формирования полного 
квадрата полинома μ 

пифагоровыми тройками полиномов 
(xꞌ, yꞌ, σ) и (σ, zꞌ, μ) 

Fig. 2. Formation scheme of 
the complete square of the μ polynomial 

by рythagorean triples of (xꞌ, yꞌ, σ) 
and (σ, zꞌ, μ) polynomials
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Рис. 3. Исходные данные
Fig. 3. Initial data
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Решение системы уравнений позволяет полу-
чить множество корней (четвёрок u

0
, u

1
, v

0
, v

1
) в ко-

личестве 16, из которых только четыре веществен-
ных, приводящих к двум решениям. Эти решения 
позволяют построить два сегмента пространствен-
ных PH-кривых. Ниже приводятся вычисления  
и визуализация одного из них:

u
0 
= 0,611, u

1
 = 1,788, v

0
 = –2,141, v

1
 = 0,442.

2. Вычисляются полиномы-проекции годографа 
искомой кривой:

 

 
3. Вычисляется полином σ(t):

 
4. Определяются полиномы a(t) и b(t) заданием 

параметра k, например, k = 1:
 
 

5. Вычисляется полином — третья проекция z’(t) 
годографа искомой кривой:

 

6. Вычисляется параметрическая скорость иско-
мой кривой:

 

 
7. Определяются параметрические уравнения 

сегмента искомой PH-кривой:

                                                               ,

                                                                 ,
 .

                                                         .

8. Выполняется визуализация сегмента искомой 
PH-кривой (рис. 4).

Пример 2. Известны сегмент-проекция (sg
1
)
xy
  

и пространственный сегмент sg
1
 конструируемой 

составной PH-кривой (данные из примера 1). Из-
вестен также касательный вектор 
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)1,2(3 d  

 в конеч-
ной точке A

3
 второго сегмента sg

2
, стыкующегося  

с сегментом sg
1
 в их общей точке A

2
 по гладкости C1 

(по общему касательному вектору 
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) (рис. 5). Тре-
буется построить сегмент sg

2
 составной PH-кривой 

и записать его параметрические уравнения: X(τ), 
Y(τ), Z(τ), τ ϵ [τ

1
 = 0, τ

2
 = 1].

Алгоритм решения.
1.  Вычисляются координаты конечной точки A

2
 

сегмент-проекции (sg
1
)
xy
 составной PH-кривой под-

Рис. 4. Визуализация сегмента полученной 
PH-кривой 

Fig. 4. Visualization of the segment 
of the obtained PH-curve

Рис. 5. Исходные данные для построения
 сегмент-проекции (sg

2
)xy 

Fig. 5. Initial data for constructing 
the (sg

2
)xy  projection segment
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Рис. 6. Визуализация составной 
пространственной PH-кривой 

Fig. 6. Visualization of the composite 
spatial PH-curve
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становкой значения параметра t=1 в уравнения 
сегмент-проекции (sg

1
)
xy
: x(t), y(t) (в п. 7 примера 1). 

A
2
(3,437; 0,322).
2.  По исходным данным и по координатам точ-

ки A
2
 строится проекция (sg

2
)
xy
 (рис. 6), затем сам 

сегмент sg
2
 в пространстве. Уравнения сегмента sg

2
:

 

                                                    ,

                                                    ,

                                                         ,

где X
1
 = x

A2
, Y

1
 = y

A2
, Z

1
 = z(t=1). 

На рис. 7 и 8 приведён результат конструирова-
ния пространственной PH-кривой для изменённой 
проекции вектора 
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Заключение
Предложен подход к конструированию про-

странственной PH-кривой на основе последова-
тельного конструирования её плоских образов, 
отличающийся от известного аналитического кон-
струирования в пространстве. Этапу появления 
образов предшествует нахождение соответству-
ющих им годографов в тех же плоскостях, кото-
рые геометрически представляют собой линейную  
и нелинейную (круговую) ортогональные проекции 
пространственного годографа искомой PH-кривой. 
Изначально принимается, что каждая из этих про-
екций удовлетворяет пифагорову условию, необ-
ходимому для конструирования пространственной 
PH-кривой.

В качестве исходных данных для конструирова-
ния принимаются проекции векторов касательных  
в начальной и конечной точках конструируемой 
PH-кривой на горизонтальной плоскости. В чис-
ловых примерах приведены алгоритмы конструи-
рования, демонстрирующие особенности процесса 
последовательного формирования кривой с исполь-
зованием плоскостей проекций.

Как следует из алгоритмов, управление фор-
мой конструируемой PH-кривой возможно за счёт 
изменения касательных векторов в ее начальной  
и конечной точках. При этом начальная точка опре-

деляет положение PH-кривой в пространствен-
ной системе координат. Показана возможность 
конструирования кусочной пространственной  
PH-кривой по гладкости С1 стыковки её сегментов.
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Fig. 7. Visualization of (sg
1
)xy  and (sg

2
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segment projections at 
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Рис. 8. Визуализация составной PH-кривой 
при  
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Fig. 8. Visualization of the composite 
PH-curve at 
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