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PROMISING SYSTEMS
FOR CONTROLLING PROSTHETICS:
A REVIEW

People with disabilities in the enormous scientific-technological revolution hope that
it will overshadow the provision of assistance and find suitable solutions for them
to lead their normal lives. The intersection of sciences among themselves took into
account the problem of physical disabilities and, in particular, the loss of both upper
and lower limbs. Modern prostheses are the product of the intersection of science
and the technological revolution, which are sfill in the ladders of modernity and
development due to they contain operators that can be controlled by brain signals
according to the principle of neurainterfaces. Neuroimaging techniques such as
electromyography, functional infrared spectroscopy and electroencephalography
are the superior methods of controlling these modern prostheses can be modelled
on two functions, namely independent work and hybrid work. In light of these
data the article takes upon itself these systems in their individual and hybrid states.
In addition, this artficle indicates which of these techniques is the most worthy in
creating the preferred system. The scope of the research methodology limited
to neuroimaging techniques towards scenarios of neurological rehabilitation and
restoration of lost functions. The review has three axes. The first axis collects,
summarizes and evaluates information from relevant studies published over the last
decade. The second axis presents important results from previous experimental
results in this field in relation to current research. This study was systematically
conducted to provide a rich image and evidence-based evidence of prosthetic
control techniques to all experts and scientists. The third axis is to identify a wide
area of knowledge that requires further investigation, and follow-up the succession
of scientific events of these systems towards the possibility of integration among
themselves to create the most promising system for controlling prostheses.

Keywords: disability, electroencephalography, electromyography, functional near
infrared spectroscopy, hybrid brain-computer interface, control system, operators,
prostheses.

Introduction

Our concrete world, which has become inflamed
by wars with modern and deadly lethal weapons,
indicates that disabilities are constantly increasing
and significantly. In order to diagnose the focus of
the research we take in consideration the disabilities
that can be seen in the upper limbs are present in five
essential regions [1]:

1. Wrist amputation.

2. Forearm amputation.

3. Shoulder amputation.

4. Shoulder joint amputation.

5. Forequarter amputation.

Disability or loss of a body part is a difficult
psychological blow to a person, which causes anxiety,
stress and depression, has a strong impact on a person's
personality and may even lead to suicidal thoughts.
In order to put the disability of the limbs, in particular,
the upper limbs, as a research problem, it is necessary
to work on finding alternatives using concerted
efforts and cooperation and taking advantage of the
accelerated technological progress to improve the lives
of the missing limbs.

Previously, the prosthesis served only a cosmetic
purpose, and after technological progress entered, the

prosthesis was blended to be a hybrid between aesthetic
and functional performance. To control the functional
performance, it is necessary to control the triggers of
the prosthesis. Modern neural interfaces play the role of
controlling these operators that — neural interfaces —
based on the real-time detection of patterns of motor
activity of the brain using neuroimaging techniques
on the one hand and the transformation of the
information obtained into commands for controlling
the example of a prosthesis on the other [2, 3].

Brain — computer interfaces (BCIs) can be
defined as neural interfaces that keep pace with
modern technical development, which are innovative
in measuring brain activity and transferring commands
to a computer or an external device, and they are based
on controlling machines and other devices using only
what the operators think (using only their thoughts).
BClIs in terms of operation, there are two different
systems, namely

— unidirectional its action is limited to either
receiving signals from the brain or sending signals
to the brain;

— bidirectional allowing the exchange of
information in both directions, thereby controlling
external devices [4].



It should also be noted that neural interfaces can
be classified depending on the nature of the work,
whereas recent studies have proven the possibility
of forming another system of neural interfaces called
hybrid brain-computer interface systems, which
abbreviated as hybrid brain—computer interfaces
(HBCIs). In terms of data processing the work of
HBCIs is extends to hybrid double and triple data
processing and is not limited to single data processing
[5], [6—8]. Neuroimaging methods can be based
on BCIs or HBCIs. Currently, the most prominent
and popular methods for controlling neuroprostheses
neurorehabilitation are electroencephalography (EEG)
[9, 10], functional near infrared spectroscopy (f{NIRS)
[11, 12], and electromyography (EMG) [13, 14].

As documented by recent experimental studies, the
most common methods are (EEG, fNIRS and EMQG),
which are of great interest in the fields of prosthetics.
It should be noted that these methods (when used
independently) cannot form an integrated system
and this is due to several inherent disadvantages.
However, what distinguishes these methods is that they
can be one that can fill the shortcomings of the other
with which they share in the composition of the hybrid
system. On the related hand, the fNIRS technique is
one of the most important ways to form a hybrid system,
as it does not depend on muscle activity. The absence
of muscle activity or muscle lethargy, or their inability
to cause a deficiency in EEG and EMG techniques.

Similar, the article sheds light on adored
technologies in the control framework on external
devices and diagnoses their superiority and non-
superiority towards HBCs based on the most important
studies that have dealt with these technologies whether
used in the individual state or in their hybrid state.
In addition, this article encourages those interested
in scientific research related to prosthetic control
systems, exoskeletons and in general devices that
can be controlled through the biological imagination.
The product of scientific progress of medical devices
overshadowed the improvement and management of
prostheses in terms of aesthetics and functionality [15].
Thus, the classification of human-machine interaction
strategies is influenced by recorded brain signals that
are well-known tools for studying brain functions and
which are in the depth of the growing scientific research
axes. In turn, neuroimaging techniques that come into
significant contact with prosthetics have emerged.

EEG is one of the first neuroimaging techniques
proposed and mastered. It is used to record
physiological signals during brain activation to
represent hand movements as a procedure for
controlling prostheses particularly, the upper limbs
[16]. Electromyography (EMG) is another pioneering
technique using electromyography for controlling
external devices [17] and neurorehabilitation [18].
fNIRS is a powerful tool for studying brain activity,
more widely used in current research and in various
fields [3]. Despite the relative successes achieved by
the above techniques, they cannot be considered as
promising and ideal ways to control prosthetic limbs
due to the drawbacks associated with them. Similarly,
this review deals with future perspectives that strengthen
the concepts of finding a promising prosthetic control
system.

Scope of research methodology strategy

The ultimate goal of this review is to analyze and
compare the systems and research studies in the
field of prosthetics in order to consolidate the idea of
finding an integrated and promising control system

Indlvndual EEG EMG
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Fig. 1. Research methodology for the most common systems
for prosthetic scenarios

for the prosthesis. The methods varied from databases
such as Google Scholar, eLIBRARY, Scopus and
various websites such as https://www.refseek.com,
https://www.base-search.net and others. The scope
of the research strategy and methodology involved
hundreds of up-to-date sources for 95 % (2020 —2024)
and was reduced to 67 sources.

The sequence of searching for technical systems,
both individual and combined, up to the control system
of the prosthesis can be indicated in Fig. 1.

Conclusion the research methodology focused
on the topics of the article and its keywords, the
recommendations of experienced researchers and the
usefulness of their observations, and then added or
deleted them to reach the target purpose.

Hybrid brain—computer interface (HBCI)

The concept of BCI is related to the fact of
recognization of datainreal time and thisis considered an
essential requirement for controlling the prosthesis. BCI
is located at an interdisciplinary concept as it includes
engineering, computer science, biology and physics
but its development is closely and really related
to physics. Spontaneous physiological processes or
processes resulting from external stimulation lead to the
classification of brain states according to its recorded
activity in real time using an intelligent BCI system.
The reception of signals from the brain, sending them
to it, or allowing the exchange of information carried by
these signals in both directions depends on the work of
HBCI [19], and can be classified as the following [3, 4]:

BCI based on the control command. The neural
interfaces are classified based on the active-reactive
and passive mode or they may be dual-mode and this
depends on the control commands provided by BCI
operator.

BCI based on the way the input data are processed.
Synchronous and asynchronous this depends on the
input processing method.

BCI based on invasive and non-invasive BCI
and brain—machine interfaces. Electrophysiological
recordings may be classified as non-invasive or invasive,
but it is the most promising system for controlling
prostheses based on non-invasive (the purpose of the
current article).

HBCI includes single data processing, or extends
to double and triple data processing and this is what
makes it a hybrid system [20, 21 —23]. According to
the principles of operations that may be related to
electrical activity, chemical processes of the brain or
others, one of the highest goals of HBCI is to control
prostheses or external devices in general using brain
electrical activity in the form of EEG [24] or chemical
activity in the form of fNIRS [25, 26], when used
alone or in combination [27]. A large percentage of
PSI systems use only one type of physiological signal,
whereas fNIRS method is able to take advantage of
different methods and thus can combine active and
passive neural interfaces.

Active and passive HBCI systems are more efficient,
allow assessing the mental state of the human or
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animal and take benefit of various systems such as
fNIRS and EEG [24, 28, 29] as well as EEG-EMG hybrid
technologies [30, 31]. In the context of hybridisation
systems HBCI can be of three types according to
different brain activity signals:

I. HBCI when using various signals of reflex brain
activity.

II. HBCI when using signals of brain activity mixed
with external signals of a different nature.

ITII. HBCI when using various physiological brain
activities simultaneously is synchronized with the
recording technology.

The performance of hybrid BCI provides a higher
rating accuracy than individual BCI. Therefore, one of
the fundamental reasons for not adopting HBCI on a
large scale in the bulky and complex equipment. To
decipher this complexity, lightweight and compact
HBCI needs to be implemented with caution to reduce
performance degradation. In this line of research
studies have shown that the use of HBCI with only
two EEG channels and two pairs of fNIRS (detectors
sources) can achieve high accuracy while the system is
easy to use [32].

The most common systems in prosthetics scenarios

In its independent state

EEG

EEG is a non-invasive method that depends on the
nervous system by stimulating its electrical activity, and
the information recorded by EEG and obtained between
the brain and the device as a result of electrical activity
is still low. EEG has proven itself in several areas,
particularly in clinical applications [9, 10, 33], but due
to highly sensitive to artifacts and noise, which makes
it unsuitable as a control system for prostheses when it
is in its independent state [16]. However, experimental
studies have recently been conducted to design and
implement a prototype artificial lower limb controlled
by brain signals recorded by EEG [34].

Advantages:

a. Low cost.

b. Portable, non-invasive and easy to use.

c. Can provide high temporal resolution of brain
activity.

Disadvantages:

a. Low spatial resolution due to wide distribution of
electrodes on the scalp.

b. Susceptible to artefacts associated with eye
movements, muscle contractions, etc.

EMG

EMG is a diagnostic method that works according
to the principle of skeletal muscle activity to record
vital signals resulting from muscle activity. When its
work is limited to measuring the electromyography
of the surface muscles resulting from the muscular
structure, it is called surface electromyography and
is denoted by the symbol (sEMG). The measurement
can be achieved either invasively or superficially (non-
invasively), at the level of a single muscle fiber, a single
motor unit or the entire muscle. EMG information
processing permits diagnosing musculoskeletal and
neuromuscular disorders and analyzing or using simg
for rehabilitation or robot control [14, 35].

Advantages:

a. Extremely high temporal resolution.

b. Excellent source localization capabilities.

Disadvantages:

a. Requires expensive equipment to be set up and
operate.

b. Requires highly trained personnel for proper
calibration and signal processing.

Fig. 2. Simplicity of the work, showing a subject performing

experimental tasks in a laboratory at Belgorod State
University in Russia in pursuit of finding a control system
for prostheses

c. Susceptible to environmental interference, such as
electromagnetic fields generated by nearby electronics,
which can distort readings if not properly shielded
from these sources before taking measurements.

INIRS

fNIRS is a non-invasive (neuroimaging methods for
BClIs) optical imaging technique that typically uses
two or more different wavelengths to measure changes
in the concentration of oxygenated hemoglobin
(oxyHb) and deoxygenated hamoglobin (deoxyHb)
(650 — 1000 nm). However, several aspects that probably
make fNIRS more useful for evaluation in conjunction
with EEG, sEMG, functional magnetic resonance and
positron emission tomography include its usefulness
depended on usability as well as indicators that oxygen
saturation of brain capillaries observed with fNIRS
mostly reflects neuron activity [36, 37]. INIRS can only
be measured in areas close to the surface of the cortex
and can also be referred to as optical topography (OT)
and sometimes simply as NIRS (Fig. 2).

In addition, several experiments utilizing fNIRS
for prosthesis control have been relatively successful
[1, 12].

Advantages:

a. Portable and low cost compared with other BCI
technologies.

b. Highly sensitive and capable of detecting
changes in oxygenated blood levels at different depths
of brain tissue with good accuracy when properly
calibrated.

Disadvantages:

a. Lower temporal resolution than EEG or MEG
systems due to their reliance on haemodynamic
responses rather than electrical signals directly from
neurons.

b. Not suitable for measuring deep brain structures
because it depends on the transmission of light through
the skull, which is known for the hardness of its bones,
which leads to obstruction of light in thick skulls or
dense skeletons, as in the elderly or under 5 years of
age in children.

Results of previous studies of the system in its
individual state that used the most common classifiers,
such as, Support Vector Machine (SVM), K Nearest
Neighbor (KNN), linear discriminant analysis (LDA)
and others are shown in Table 1.

Hybrid state of fNIRS + EEG

The basic idea of creating any hybrid system, be it
technical or software , is that one of the two systems
should be complementary to the shortcomings of the
other, so that the output of the hybrid system should
provide results that are superior to those of the stand-



Table 1

Classification accuracy results for systems (independent usage)

publcation year | syt Method B
[38], 2021 EEG End-to-end shallow architecture 83,20 %
[39], 2022 EEG Multiple built-in transfer training 83,14 %
[2], 2021 fNIRS NN_LSTM, NN_ ConvLST, NN_ ResNet 91 %
1401, 2020 INRS | crtor machine and k nearestneigetor | 2054
[41], 2017 EMG SVM, LDA 72,2 %
[35], 2023 sEMG CNN-LSTM 70 % : 30 %

Table 2
Classification accuracy results for systems (hybrid usage)
] Accuracy
Reference and Hybrid state of
L. Method or average
publication year system
value of accuracy
[56], 2022 EEG+{NIRS Vector-phase analysis 82, 89, 87, 86 %
fNIRS-driven attention network
57], 2022 EEG+{NIRS 78,59 % =+ 8,86
(571 (FGANet) v
FBCSP+PCA+SVM, 92,25 % = 4,99
45], 202 EEG+{NI
[43], 2023 GHINIRS GLM +MBLL
[41], 2017 sEMG +{NIRS SVM, LDA 86,4 %
[58], 2021 sEMG +fNIRS LDA 96,4 % and 94,1 %
[59], 2020 sEMG +{NIRS LDA 78—81 %

alone system. On the other hand, it should be that two
candidate systems for the formation of the hybrid state
are similar in some characteristics with the possibility of
compensating for their shortcomings with each other.

As mentioned above, fNIRS technology is the
technology that conforms to this vision, it can be
considered as a complementary tool to fill the
shortcomings of the common technology. Thus, the
possibility of creating a hybrid system of {NIRS+EEG
is possible to obtain, since the results obtained with
these systems are better than those obtained when
used independently (Table 1, 2).

In EEG, sensor-electrodes are located on the skin of
the upper part of the skull (according to international
«10—20» system) and pick up electrical signals from
neurons in the brain. This leads to the fact that the
electroencephalography of the brain can be measured
and at once allows monitoring complex nervous
activity as well as tracking its continuous changes [3].
EEG is also positive in some characteristics as well as
it is negative in some characteristics, for example, it
is non-invasive, provide high temporal resolution and
allowing real-time measurement of motor imagery
in its positive sense [42], while it is very sensitive to
noise in its negative sense, and this is what makes it
under study and to say a complementary tool, and
fNIRS may be an alternative to it for some functions or
these two technologies may have a unified system that
complements each other.

In contrast to fNIRS, which suffers from a time delay
of 3—5 seconds in detecting regions of brain activity.
It has also been extensively reported that better BCI
performance can be performed by using multimodal
analyses instead of offline EEG signals. For this,

numerous studies evaluating both the electrical activity
of the brain and the activity of the circulatory system
attracted considerable attention [43, 44]. Furthermore,
recent scientific studies based on the analysis of
activated brain regions using fNIRS proved that the
accessory motor cortex was obviously activated during
motor imagery, which leads that hybrid signals with
hybridisation strategy can improve stability and error
neglect in BCI systems, this makes it a valuable way for
practical applications [45].

The accuracy of classification and the rate of
information transfer by the method of the combination of
EEG-{NIRS due to their complementary characteristics
are from the widespread indicators in our current time
[22]. The combination of these technologies has certain
unique characteristics because the basis of merge them
is their dependence on a physiological phenomenon
called neurovascular coupling in the brain, which makes
them more useful in certain applications. The system
of the two technologies is promising for prosthetic
control [46]. Therefore, in the foreseeable near future,
a possible alternative to EEG for recording brain
activity in a mobile handheld BCI can be considered
as fNIRS technology or a form of hybrid EEG-fNIRS
method.

Hybrid state of fNIRS + EMG

EMG information processing enables the diagnosis
of muscle and neuromuscular disorders, as well as
analyze or use sEMG in various fields for example
robot control, rehabilitation and others [47, 48]. Their
frequency ranges vary from 0,01 Hz to 10 kHz and
this certainly depends on the type of study carried
out by EMG. According to recent studies, frequencies
between 50— 15 Hz are the most useful [49]. Whereas
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with fNIRS, the frequency is approximately 1 Hz at
optimal wavelength 830 nm [3, 50]. At the same
study, SEMG and {NIRS can be used together or used
independently, but when they are used together the
dual system excels.

In the field of motor activity, several studies carried
out through the techniques of f{NIRS and EMG have
shown that there is no relationship to the signals
obtained during dynamic movements when performing
sports exercises, in addition, even the methods of
signal analysis cannot be described. In [51], found that
it is possible to perform simultaneous measurements
of EMG, mechanomyography (MMG) and near-
infrared spectroscopy (NIRS) at a local position using
a multi-layered wireless sensor that can be used to
predict muscle fatigue. In the dynamics of running
on a treadmill and strength exercises a recently
developed integrated quadriceps oximetry system was
implemented in which regional muscle oxyhemoglobin
saturation and sSEMG data were measured [52].

Positive correlations were found between the
EMG signals and the fners during the recording of
oxygen consumption and muscular activity of the
left calf muscle among the participants, where the
signal correlations are with the most active and least
active lifestyles [53]. This leads to a correlation during
dynamic movements in the signals of EMG and fNIRS
during exercise.

The existence of these associations, which can be
described as positive and important, is a clear guide
towards the formation of a hybrid system, which is
what this article seeks and this quest is extended to
further laboratory studies in order to investigate the
relationship between brain activity and the performance
of motor tasks and can be targeted for clinical trials.

In the operation of the EMG system alone,
improvement in control performance requires the
addition of more EMG sensor nodes, but this method
is immaterial and impractical for people with limb
disability due to atrophy or insufficiency of the
remaining muscles [54]. Additionally, prostheses
should be lightweight, but the improvement in control
performance is offset by complexity, excess weight
and a more expensive price when adding sensory
nodes, whereas in the philosophy of prosthetics control
interfaces should be very perfect, limited sensory
channels and computational complexity [55]. Results
of previous studies of systems in their hybrid state that
used the most common methods and classifiers are
shown in Table 2.

Hardware, software and algorithms used
for signal processing

When the brain is activated by any of the triggers,
the signal reception stage begins. The acquired signal
is impure mixed with noise, artifacts and other effects,
therfore, the acquired signal goes through different
stages and here the role of artificial intelligence
represented by neural networks enters towards
filtering, analysis and classification up to the stage of
real-world application. All triggers of the motor cortex
with different commands cause a change in hemoglobin
concentration based on the stimulus that triggered
brain activity. The triggers to activate the motor cortex
should be motor triggers. What we would like to point
out is that the signal dynamics obtained using hybrid
systems concepts go through the same steps as the
signal dynamics obtained using independent systems
concepts, as shown in Fig. 3.

A modern (software and hardware-based BCI) is a
system based on artificial intelligence that can process
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Fig. 3. Dynamic stages of the signal
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Fig. 4. Basics of machine learning in its four strategies

brain activity in real time and recognise a certain finite
set of central nervous system activity patterns [2].

One of the current and promising approaches
to analysing neurophysiological signals is machine
learning are machine learning (ML) and reservoir
computing (RC). Machine learning approaches
have traditionally fallen into four broad categories,
depending on the nature of the input data and the
learning strategy shown in Fig. 4.

These methods involve analyzing data without prior
knowledge of the data source, i.e., data not associated
with the model. In other words, the wunderlying
mathematical model (or dynamical system) that
generates the time series is unknown. At the same time,
machine learning can build this model from sampled
data, known as 'training data'. Thus, these methods,
trained on a reasonable and representative amount of
training data, can perform various tasks (classification,
detection, prediction) based on the newly acquired
data [3].

The challenges can exist at any stage of the signal,
feature extraction is also not without challenges because
it depends heavily on previous complex knowledge
over time, and this leads to the risk of losing the
information that the biological signal carries [60, 61].
Feature extraction methods vary from one technique
to another, some pass through multiple stages, such
as EEG, where brain signals can be filtered in three
bands, and some are limited to one stage, such as
fNIRS, where brain signals can be filtered in one band
to improve signal quality for later analysis [45, 62].

Apparently the language of hybridisation is not
limited to technology, but this can also extend to signal
program stages. In [43], a combination consisting
of wavelength range decomposition with canonical
correlation analysis to correct for motion artifact of
single channel EEG and fNIRS signals performed
better than using wavelength range decomposition
independently.

The performance preference of single-method
and mixed methods using the conventional whole
optimization algorithm the classification accuracy was
equal to 90,37, 766 % and binary improved whale



optimization algorithm showed high classification
accuracy equal to 94,22; 539 % which means that
the classification performance increased by 3,85 %
compared to the traditional whale optimization
algorithm [63].

Discussion

Perhaps the most prominent systems in the fields of
scientific research and the most common towards the
transformation of mental commands into movement are
EEG, EMG and {NIRS. These technologies with their
individual uses face a clear deficit in the formation
of a comprehensive system but these systems can be
combined to create an integrated control system. For
example, both EEG, EMG rely on muscle activity,
whereas muscle activity may not be available if the
muscle is damaged or lost [64, 65].

The fNIRS technique is based on chemical processes
(blood oxygen level independent (BOLD). That
means meauring the concentrations of hemoglobin
and deoxyhemoglobin in the sense that they do not
depend on muscle activity and therefore can share
their positive characteristics to compensate for the
negative characteristics in the EEG technique or the
EMG technique.

After a detailed breakdown of the advantages and
disadvantages of the above methods by comparing
the results of the technologies found that the hybrid
prosthetic management system produced more accurate
results than each system individually [66]. The most
likely advantage of the hybrid system is that one of the
two technologies compensates for the shortcomings of
the other. In the case of the software system, the results
of the binary logarithms were better than those of the
individual logarithms [67]. Thereby, it is concluded
that the results obtained with hybrid systems hold
great promise and are extremely encouraging for the
development of a (software-based) prosthetic control
system.

Conclusion

Accurate control of prosthetic limbs is one of the
biggest challenges currently existing in the scientific
field. Measuring brain activity and translating it into
commands to control machines and devices using
only thoughts is extremely difficult. However, modern
technology has penetrated significantly in this field and
has made impressive progress, particularly in machine
learning and related branches such as neural networks
and others and their relationship with medical methods
as EEG, EMG and fNIRS. Each of these methods has
its own characteristics and shortcomings that have led
to its lack of effectiveness in controlling prosthetics.
A hybrid system of these technologies may be a solution
for achieving higher efficiency in prosthetic control.

It should be noted that future developments for a
hybrid system of prosthetic control are not limited to
the mentioned technologies but may extend to other
technologies as well. EEG, EMG, and fNIRS techniques
have proven to be relatively successful in prosthesis
control. Additionally, fNIRS is most convenient
when combined with EEG and EMG as confirmed by
numerous recent studies. In the future, this will be an
incentive to investigate these techniques independently
or in hybrid form, as they are the closest and most
convenient to address each other's shortcomings,
leading to a successful hybrid prosthesis management
system.

Therefore, it can be summarized more succinctly
as follows:

— EEG, EMG and INIRS systems are still in
their individual state in the circle of research and

experimental studies in endeavouring to find a control
system for prosthetic limbs.

— The combination of EEG with fNIRS is more
superior than the individual system (when EEG is used
individually or fNIRS is used individually).

— The combination of EMG with fNIRS is more
superior than the individual system (when EMG is used
individually or fNIRS is used individually).

— The principle of operation of EEG, as well as
EMG depends on muscular activity, and this activity
may not be available, while the principle of operation
of INIRS is based on chemical processes that makes it
the most suitable to be a complementary tool with EEG
or with EMG to create the most promising system for
controlling and restoring lost functions.

— There are no studies that indicate the superiority
of the EEG with fNIRS system over the EMG with
fNIRS system and this is a positive indicator for future
studies to find a standardised and comprehensive
control system for prosthetic limbs.
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HaLMOHaNbHbIM MCCNIefOBaTENbCKMH YHUBEPCHUTET,
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NMEPCNEKTUBHBIE CUCTEMDI
OJ15 YIPABJIEHUA
NMPOTE3AMMU: Ob30OP

Joan c orpaHM4YeHHbIMM BO3MOMHOCTSIMM B YCHOBUSIX CTPEMMTENbHOM Hay4yHO-
TEeXHMYECKOM PEBOMIOLMM HAAEloTCs, YTO OHa NpeofoNieeT MAMLb OKa3aHue MM
NOAAEPMKN M HaUAET NOAXOAsLIME peLueHHs], YTOObl BECTM HOPMANbHYIO M3Hb.
B3aumofeHCTBME HAayK MexAy CO6OM yuuTbiBaeT npobnemy (M3MuecKMx Hego-
CTATKOB M, B YACTHOCTM, MOTEPIO KaK BEPXHMX, TaK M HMXKHMX KOHeuyHocTel. CoBpe-
MeHHbIe NMPOoTe3bl SBASIOTCA NPOJYKTOM NepeceyeHnsl HayKM M TeXHOMOrMYeCKon
PEBOMIOUMM U BCe ele HAaXOASATCS Ha MYTM CBOEro CTAHOBMEHMS, MOCKOMbKY CO-
AepPXKaT MCMOSNIHMTENbHbIE MEeXaHW3Mbl, KOTOPble MOTYT YNPaBASATLCS CMrHaNaMmM
MO3ra Mo NPUMHUMNY HEHPOMHTEP(PeHCOB. MeToAbl HEHPOBM3YanM3aL MM, TaKMe KaK
aneKTpommorpadus, pbyHKLUMOHaNbHAs MH(PPaKPACHasi CNEKTPOCKONMS M 3NIEeKTPO-
3HUedanorpacms, SBASIOTCA NPEBOCXOAHBIMM METOAAMM YNPABAEHMSI 3TUMM CO-
BPeMEeHHbIMM NPOTE3aMH, KOTOPbIE MOXHO CMOAENMPOBaTb MO ABYM (DYHKLMSIM,
a MMEHHO MO He3aBUCMMON paboTe u rMb6puaHOH paboTe. B cBeTe 3TUX faHHbLIX CTa-
Thsl PACCMATPMBAET 3TH CUCTEMbI B MX MHAMBUAYaNbHbIX U TMOPUAHBLIX COCTOSIHMSAX.
Kpome TOro, B CTaTbe yKa3bIBaeTCsl, KAKOM M3 3TUX METOAOB MOXeT 6biTh BbIGpaH
B KayecTBe NPeAnovTMTeNbHOM cucTeMbl. O6nacTb NPUMMEHEHNS MeTOONOMMM MC-
CnefioBaHMsl OrpaHM4YeHa MeTOfaMM HEHPOBM3YanM3aLuMM B OTHOLLEHMM CLieHapHeB
HEBPONOrM4YeCKoOM peabMnMTaLMmM U BOCCTAHOBMIEHMSl YTPaYeHHbIX (PYHKLMH. O630p
MmeeT TpM HanpaeneHms. Mepeoe HanpaeneHue cobupaet, o6o6uiaeT M oL eHMBa-
eT MHOPMaLUMIO U3 COOTBETCTBYIOLMX MCCNEefOBaHMM, ONyGAMKOBaHHbIX 3a NO-
cnefHee fecsituneTtve. Bropoe npeacTaBnsieT BaXkHblie pe3ynbTaThl NPefbigyLmMxX
3KCNEePHMEHTaNbHbIX Pe3YNbTaTOB B 3TOM OGNacTM B OTHOLUEHMM TEKYLMX Mccre-
AoBaHMH. UccnefoBaHne 6bINO NPOBEAEHO CMCTEMATHUYECKH, YTOObI NPefoCTaBUTb
BCEM 3KCMepTam M YYeHbIM NONHOEe NpefAcCTaBneHne M OCHOBaHHbIe Ha JOKa3aTenb-
CTBaX MeTofibl yNpaBneHusi npote3amM. TpeTbsl YaCTb 3aKNIOYAETCA B BbISIBIEHMM
LUMPOKOM 06nacTM 3HaHMK, Tpebyiowen AanbHeMLIEro U3yYeH!s, M OTCIEXMBaHNM
nocneoBaTeNbHOCTM Hay4HbIX JOCTMXKEHMH B 3TUX CUCTEMaX M BO3MOMHOCTH MH-
Terpaumm mexxay coboi ans cosgaHus Haubonee NepPCNeKTMBHOM CMCTEMbI YNPaB-
NleHMsl MPOTe3aMM.

KnioyeBble cnoBa: MHBaNMAHOCTb, 3NEKTPO3HUedanorpadus, aneKkTpommorpadcms,
(yHKUMOHaNbHaa MH(PaKpacHasi CNeKTPOCKonus, rMépuaHbIM MHTEepdeinc Mo3r-
KOMMbIOTEP, CHCTEMA YMNpaBlieHMs, onepaTopsbl, NPoTe3bl.
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