В. В. ДАНЬШИНА

Омский государственный технический университет, г. Омск

ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКИХ СВОЙСТВ НАНОКРИСТАЛЛИЧЕСКИХ СИСТЕМ СЕЛЕНИДОВ ЦИНКА И КАДМИЯ

Экспериментально и теоретически исследованы физические свойства нанокристаллических систем селенидов кадмия и цинка. Экспериментально изучено воздействие температуры и различных газовых сред на удельную проводимость пленок селенидов кадмия и цинка. Теоретически рассчитаны значения энергии Ферми, концентрации донорных носителей заряда в зоне проводимости, энергии активации доноров и температурного коэффициента сопротивления. Показано, что рассчитанные значения коррелируют с экспериментальными, что позволит прогнозировать стабильность работы полупроводниковых приборов.

Ключевые слова: CdSe, ZnSe, энергия активации, энергия Ферми, концентрация доноров, температурный коэффициент сопротивления.

Введение. Нанокристаллические системы селенидов кадмия и цинка, обладающие уникальными физико-химическими свойствами, широко применяются в полупроводниковой промышленности, например, в фотонике [1], оптоэлектронике [2], мехатронике [3].

Концентрация носителей зарядов [4] и величина ширины запрещенной зоны [5] позволяют использовать селениды в бионаноценсорах и фотодетекторных наноустройствах. Благодаря хорошей электропроводности полупроводниковые селениды нашли широкомасштабное применение в виде тонких пленок, применяемых в фотодатчиках [6], в элементах солнечных батарей [7].

На работу приборов оказывают влияние разные характеристики полупроводников. Шумовые свойства фоторезистора из n-CdSe зависят от концентрации носителей заряда [8]. Концентрация носителей зарядов влияет на энергию активации [9]. Одним из основных параметров работы терморезистора является температурный коэффициент сопротивления.

При изучении свойств селенидов цинка и кадмия важную роль играет поверхность, т.к. при эксплуатации полупроводниковых приборов на основе селенидов цинка и кадмия на их поверхности могут адсорбироваться газы — компоненты воздуха. В результате этого могут нарушиться некоторые эксплуатационные характеристики приборов. Поэтому актуальным является исследование характеристик электрических свойств нанокристаллических систем ZnSe и CdSe, а также влияние на них адсорбированных газов.

Отсутствие всесторонней информации о влиянии среды и давления газов на структуру, физико-химические свойства селенидов и параметры наблюдаемых в них фазовых переходов делают актуальными любые исследования в этом направлении. Так, например, электрофизические свойства тонких пленок халькогенидов кадмия изучены в [10], а так как габитус образцов не влияет на свойства, то выводы этих исследований можно перенести и на порошковые образцы чистых материалов селенидов.

Кроме того, в литературных источниках [11, 12] не для всех полупроводниковых халькогенидных соединений содержатся сведения о таких важных параметрах электрофизических свойств селенидов, как энергия Ферми, концентрация носителей заряда, температуры истощения примесных уровней, температурного коэффициента сопротивления и других величин.

Цель настоящей работы — на основании результатов экспериментальных исследований электропроводности теоретически рассчитать характеристики электрических свойств нанокристаллических систем селенидов цинка и кадмия.

Объекты и методики эксперимента. Образцы селенидов цинка и кадмия для исследования были получены по стандартным технологиям: пленки термическим испарением [10], нанокристаллические системы — методом изотермической диффузии смеси порошкообразных ZnSe и CdSe.

Аттестация образцов производилась по рентгенограммам, расчёт параметров кристаллической решётки фазовых составляющих селенидов и их нанокристаллических систем — по стандартным квадратичным формулам, описывающим гексагональную и кубическую сингонии [13, 14]. Для селенида кадмия (как пример) приводится штрихдиаграмма (рис. 1) с индексами отражающих плоскостей после вычета рефлексов подложки.

Электрическая проводимость пленок [13] исходных бинарных соединений измерялась при вакуумировании, а также в атмосфере водорода и оксида углерода (II) в температурном интервале 293...433 К

70

Рис. 1. Штрих-диаграмма селенида кадмия

при давлениях газовой среды 9,7 Па и 27,9 Па. Образцы отжигались в вакууме (давление ~ 0,13 МПа, температура 643 К) до получения стабильных значений поверхностной электропроводности.

Изучаемые селениды являются полупроводниками п-типа. Величину энергетического интервала между донорными уровнями и зоной проводимости ΔE_d можно определить, используя графики линейной температурной зависимости $\ln \sigma_{_{зксп.}} = f(1/T)$.

$$\Delta E_d = 2k \cdot \mathrm{tga},\tag{1}$$

где *k* — постоянная Больцмана, tga — угловой коэффициент линейных зависимостей.

Некоторые характеристики электрофизических свойств материала селенидов можно определить, сравнивая при одинаковых температурах экспериментально полученные значения удельной проводимости $\sigma_{_{эксп.}}$ с теоретически рассчитанными значениями $\sigma_{_{meop.}}$ Используя основные положения теории *n*-полупроводников, теоретическую проводимость при конкретной температуре можно рассчитать по формуле

$$\sigma_{meop} = e \cdot n \cdot \mu = eA\mu \sqrt{n_d \cdot \sqrt[4]{T}^3 \exp\left(-\frac{\Delta E_d}{kT}\right)}, \qquad (2)$$

где e — заряд электрона, n — концентрация доноров в зоне проводимости при температуре T, n_d — концентрация доноров в зоне проводимости в режиме полного истощения донорных уровней, μ — подвижность доноров, ΔE_d — энергия активации доноров. Величины n и μ зависят от температуры. Не зависящим от температуры в формуле (2) является множитель A:

$$A = \sqrt{2} (2\pi m kT)^{\frac{3}{4}} \cdot h^{-\frac{3}{2}} = 2.4 \cdot 10^{11},$$

в который входят постоянные величины: *m* — масса электрона, *k* — постоянная Больцмана, *h* — постоянная Планка.

Концентрацию валентных электронов n_{e^i} в предположении, что на формульную единицу селенида приходится 8 валентных электронов и энергию Ферми E_{ϕ} в исследуемых соединениях вычисляли по соответствующим формулам теории полупроводников:

$$n_e = \frac{8\rho \cdot N_A}{M}, \quad E_{\Phi} = \frac{h^2}{8m} \cdot \left(\frac{3n_e}{\pi}\right)^{\frac{1}{3}}.$$
 (3)

Ренттеновская плотность вещества селенидов р вычисляется как [14]:

$$\rho = \frac{nM}{VN_A} \,, \tag{4}$$

где V — объем элементарной ячейки: V = a^3 и V = 0,866 a^2c , где a и c — параметры кубической и гексагональной соответственно.

Для *п*-полупроводников температурный коэффициент сопротивления а вычисляется по формуле [14]:

$$\alpha = -\frac{\Delta E_d}{2k \cdot T^2},\tag{5}$$

где *к* — постоянная Больцмана, *Т* — температура.

Результаты эксперимента и их обсуждение. Расчет рентгенограмм пленочных образцов показал, что исследуемые пленки бинарных соединений имеют однородную структуру, которая соответствует гексагональной решетке модификации вюрцита с параметрами кристаллической элементарной ячейки: *a* = 0,566; 0,605 нм соответственно для CdSe, ZnSe. Рентгеновские плотности селенидов (формула (4)) равны $\rho_{cdse} = 5,74\cdot103$ и $\rho_{znse} = 5,29\cdot103$ кг/м³.

Расчет рентгенограмм поликристаллических порошковых образцов исследуемых селенидов показал, что в чистом виде селенид кадмия находится в модификации вюрцита с параметрами гексагональной ячейки *a* = (0,430+0,008) нм, *c* = (0,695+ +0,028) нм, а селенид цинка — в модификации сфалерита с параметрами кубической ячейки *a* = = (0,566+0,009) нм. Рентгеновская плотность, вычисленная на основании формулы (1) для CdSe и ZnSe, соответственно равна 5,71·103 и 5,29·103 кг/м³. Эти результаты находятся в хорошем соответствии с табличными и литературными данными [12].

Для селенидов кадмия и цинка характерно наличие низкой концентрации носителей заряда $n_{a'}$ но довольно большой ширины запрещенной зоны ΔE . По данным литературных источников, например [12], она оценивается в пределах $\Delta E = 1,7-1,9$ и 2,7-2,8 эВ соответственно. Температурная область 293...433 К для них является низкотемпературной областью, в которой проводимость создается избыточными по отношению к стехиометрическому составу электронами и дефектами кристаллического строения в виде внедренных в решетку атомов, т. е. донорами.

Величины удельной проводимости в вакууме σ_{эксп.} для CdSe и ZnSe при одинаковых температурах представлены в табл. 1. Проводимость пленочных образцов CdSe и ZnSe, не только в вакууме, но и в газовых средах, увеличивается при повышении температуры по экспоненциальному закону, что согласуется со справочными данными [15], для

Таблица 1

Удельная проводимость тонких пленок в вакууме

Т, К	σ∵10⁴, См		
	CdSe	ZnSe	$\sigma_{\rm CdSe}^{}/\sigma_{\rm ZnSe}^{}$
293	4,0	2,8	1,40
313	5,5	3,4	1,62
333	9,0	4,3	2,09
353	13,0	5,3	2,45
373	16,5	6,5	2,54
393	20,0	7,9	2,53
413	23,5	9,7	2,42
433	47,5	11,8	4,02

температурного коэффициента сопротивления

полупроводниковых соединений. На рис. 2 представлены сравнительные линейные зависимости $\ln\sigma_{_{3KCR.}} = f (1/T)$ для CdSe и ZnSe, полученные в вакууме.

В вакууме удельная проводимость CdSe при всех температурах выше удельной проводимости ZnSe (табл. 1). К температуре 433 К проводимость CdSe увеличивается почти в 12 раз относительно комнатной температуры, а ZnSe — в 4 раза. Отношение проводимостей $\sigma_{_{CdSe}}/\sigma_{_{ZnSe}}$ при комнатной температуре равно 1,4, затем в начальной стадии нагревания до температуры 353 К указанное отношение проводимостей сложным образом возрастает до значения 2,5. В температурном интервале 353...393 К оно остается постоянным и равным примерно 2,5. Конечный этап нагревания (после 400 К) заканчивается значительным ростом величины $\sigma_{CdSe}/\sigma_{ZnSe}$ до значения, равного 4. Как видно из рис. 2, именно в последнем температурном интервале, примерно в области температуры 400 К, прямолинейная зависимость $ln\sigma = f(1/R)$, для CdSe имеет излом, соответствующий моменту истощения донорных носителей заряда (момент перехода примесной проводимости в собственную проводимость). Проводимость CdSe при более высокой температуре может значительно увеличиться только за счет появления собственных носителей заряда. Таким образом, при температурах свыше 400 К проводимость CdSe постепенно переходит в область собственной проводимости. Для ZnSe даже при более высокой температуре момент донорного истощения не замечен (рис. 3). На основе линейного хода температурных зависимостей проводимости $ln\sigma = f(1/R)$, представленных на рис. 2, по формуле (1) была рассчитана энергия активации доноров (т. е. ширина энергетического

Значения характеристик электрофизических свойств

	CdSe	ZnSe
Концентрация валентных электронов, п _е ·10 ⁻²⁸ , м ⁻³	14,45	17,65
Энергия Ферми, ΔE_{φ} , эВ	10,8	11,5
Энергия активации доноров, ΔE_{d} , эВ	0,34	0,23
Концентрация доноров в зоне проводимости, n _d , м ⁻³	1020	1016
Температурный коэффициент сопротивления при $T = 300$ К, $\alpha \cdot 10^{-2}$, K^{-1}	-2,3	-1,6

интервала между донорными уровнями и зоной проводимости) ΔE_d : для CdSe и ZnSe она оказалась соответственно равной 0,34 и 0,23 эВ (табл. 2).

Для теоретических оценочных значений некоторых характеристик электрических свойств селенидов цинка и кадмия используем формулы (2) и (3) для температур 300 и 370 К (табл. 1). Вторая температура приходится на середину температурного интервала, в котором отношение проводимостей $\sigma_{\rm cdse}/\sigma_{\rm ZnSe}$ практически не изменяется от температуры и проводимость в обоих селенидах обеспечивается только донорами. Принимая во внимание, что величина n_d (формула (2)) при двух температурах для одного и того же селенида будет одинаковой, получим значения отношений подвижностей:

$$\left(\frac{\mu_{300}}{\mu_{370}} = 3,4\right)_{CdSe} \bowtie \left(\frac{\mu_{300}}{\mu_{370}} = 2,7\right)_{ZnSe}.$$

При возрастании температуры подвижность носителей заряда в селенидах уменьшается, что соответствует литературным источникам.

Принимая во внимание, что подвижности электронов при Т = 300К в обоих селенидах одинаковы и на основе справочных данных равны μ_{300} = =600 см⁻²/(В·с) [15], получим отношение величин: $(n_d)_{\rm CdSe}/(n_d)_{\rm ZnSe} = 1,1.10^4$. Решая далее систему уравнений, состоящую из экспериментального отношения удельных проводимостей ($\sigma_{cdSe}/\sigma_{znSe} = 2,5$)_{эксл.} и разности этих проводимостей $\Delta \sigma_{_{эксл.}} = 10,5\cdot10^{-4}$ См для температуры 370 К, получим для CdSe значение величины концентрации доноров проводимости: $n_{d,CdSe} = 7.10^{19} - 10^{20} \text{ м}^{-3}$. Соответственно, эта величина для ZnSe — на 4 порядка меньше: $n_{d,ZnSe}$ = = ~10¹⁶ м⁻³. Таким образом, в селениде цинка изначально концентрация валентных электронов в 1,22 раза больше, чем в селениде кадмия (табл. 2), но концентрация донорных электронов на 4 порядка меньше. Эти вычисления подтверждаются литературными данными [5] и экспериментальными значениями проводимости: электрическая проводимость ZnSe меньше, чем CdSe, но он выдерживает более длительный нагрев, не изменяя своих электрических свойств в изученном диапазоне температур. Энергия Ферми, вычисляемая по формуле (3) через концентрацию валентных электронов для рассматриваемых халькогенидных соединений, примерно одинакова и имеет порядок величины Е_ф~11 эВ (табл. 2).

Значения температурных коэффициентов сопротивления α (формула (5)) при T = 300 К равны $\alpha_{\rm CdSe} = -0.023$ и $\alpha_{\rm ZnSe} = -0.016$ К⁻¹ соответствуют

72

ОМСКИЙ НАУЧНЫЙ ВЕСТНИК № 4 (184) 2022

Удельная проводимость при адсорбции водорода и оксида углерода (II)

	σ104, См				
<i>Т</i> , К	водород		оксид углерода		
	ZnSe	CdSe	ZnSe	CdSe	
293	3,9	4,0	2,8	3,0	
313	5,3	6,5	3,0	4,0	
333	7,0	12,0	3,4	5,0	
353	9,9	18,0	4,0	8,0	
373	12,2	23,0	4,7	10,5	
393	14,9	28,5	5,4	13,5	
413	—	34,5	-	16,5	

Таблица 4

Энергия активации доноров в разных средах и давлении

Среда	$\Delta E_{d'}$ $\Im B$		
	n-CdSe	n – ZnSe	
Н ₂ — 27,9 Па	0,38	0,26	
Н ₂ — 9,7 Па	0,29	0,20	
вакуум	0,34	0,23	
СО — 9,7 Па	0,31	0,15	
СО — 27,9 Па	0,25	0,12	

литературным источникам, по которым для полупроводниковых материалов α имеет отрицательный знак и по порядку величины оценивается как $10^{-2} \,\mathrm{K}^{-1}$. При нагревании величина температурного коэффициента сопротивления уменьшается сложным образом для обоих соединений, но для CdSe зависимость $\alpha = f(T)$ является более крутой (большее значение α), чем для ZnSe (рис. 3).

В табл. З представлены результаты измерений электрической проводимости пленок селенидов цинка и кадмия в среде водорода и оксида углерода (II) при давлении 9,7 Па. Для обоих соединений в среде водорода объемный поверхностный заряд (ОПЗ) является положительным, в среде оксида углерода — отрицательным.

В вакууме энергия активации доноров равна: для CdSe $\Delta E_d = 0,34$ эВ, а для ZnSe — 0,23 эВ. По сравнению с вакуумом величина энергии активации доноров ΔE_d для обоих соединений при увеличении давления водорода увеличивается, при увеличении давления оксида углерода — уменьшается, но степень изменения величин больше для ZnSe, чем для CdSe (табл. 4). Для примера, в CdSe при давлении газовых сред 27,9 Па в атмосфере оксида углерода (II) она уменьшается на 18 %, а в атмосфере водорода увеличивается — на 30 %. Для селенида цинка с ростом энергии активации доноров увеличивается электрическая проводимость, для селенида кадмия незначительно уменьшается.

Рассчитанные значения температурных коэффициентов сопротивления, энергии активации доноров и концентрации донорных электронов коррелируют с удельной проводимостью селенидов цинка и кадмия. Это позволяет прогнозировать области применения данных соединений в приборо-

строении без предварительных экспериментальных исследований.

Заключение. Впервые теоретически рассчитаны значения характеристик электрических свойств нанокристаллических селенидов кадмия и цинка соответственно: энергия Ферми — $E_{\phi} = 10,8$ и 11,5 эВ; энергия активации доноров — $\Delta E_d = 0,34$ и 0,23 эВ; концентрация доноров в режиме истощения донорных уровней — $n_d = ~1020$ и ~1016 м⁻³; температурный коэффициент сопротивления — $\alpha = -2,3\cdot10^{-2}$ и $-1,6\cdot10^{-2}$ К⁻¹, которые хорошо согласуются с экспериментальными результатами удельной проводимости.

Переход донорной проводимости в режим собственной проводимости наблюдается в CdSe при температуре 400 K, а в ZnSe — значительно позже.

Концентрация донорных электронов в зоне проводимости, в CdSe больше, чем в ZnSe.

При взаимодействии газов с поверхностью селенидов цинка и кадмия выявлено отсутствие корреляции между значением ширины запрещенной зоны, знаком заряда поверхности и величинами удельной проводимости.

При адсорбции оксида углерода (II) поверхность халькогенидов приобретает отрицательный заряд, а при адсорбции водорода — положительный, это согласуется с рассчитанной величиной энергии активации доноров.

Так как в городских условиях предельно допустимая концентрация СО не редко бывает завышена, то для стабильной работы полупроводниковых приборов их рекомендуется защищать от его воздействия.

Корреляция теоретических значений с экспериментальными позволит прогнозировать стабильность, эффективность и чувствительность работы полупроводниковых приборов без предварительных экспериментальных исследований.

Библиографический список

1. Venci X., George A., Raj A. D. [et al.]. Photocatalytic degradation effect of CdSe nanoparticles for textile wastewater effluents at low cost and proves to be efficient method // Environmental Research. 2022. Vol. 213. 113595. DOI: 10.1016/j. envres.2022.113595.

2. Pan A., Zhu X. Optoelectronic properties of semiconductor nanowires // Semiconductor Nanowires: Materials, Synthesis, Characterization and Applications. Woodhead Publishing Series in Electronic and Optical Materials, 2015. P. 327–363.

3. Regtien P. P. L., Dertien E. C. Sensors for Mechatronics. 2nd ed. Amsterdam: Elsevier, 2018. 379 p.

4. Minami T. Transparent Conductive Oxides for Transparent Electrode Applications // Semiconductors and Semimetals. December 2013. Vol. 88. P. 159–200. DOI: 10.1016/B978-0-12-396489-2.00005-9.

5. Rosmani C. H., Zainurul A. Z., Rusop M., Abdullah S. The Optical and Electrical Properties of CdSe Nanoparticles // The Optical and Electrical Properties of CdSe Nanoparticles, Advanced Materials Research. 2013. Vol. 832. P. 557–561. DOI: 10.4028/www.scientific.net/AMR.832.557.

6. Mohammed K. A., Ziadan K. M., Al-Kabbi A. S. [et al.]. Optical, morphological, electrical properties and white light photoresponse of CdSe nanoparticles // Advances in Materials and Processing Technologies. 2022. DOI: 10.1080/2374068X.2022.2037877.

7. Ali N., Hussain A., Ahmed R. [et al.]. Advances in nanostructured thin film materials for solar cell applications // Renewable and Sustainable Energy Reviews. 2016. Vol. 59. P. 726-737. DOI: 10.1016/j.rser.2015.12.268.

ОМСКИЙ НАУЧНЫЙ ВЕСТНИК № 4 (184) 2022

8. Давыдов В. Н., Гребенников А. С., Егорова И. А. Дисперсии носителей заряда в примесно-дефектных полупроводниках при совместном действии засветки и электрического поля // Доклады ТУСУР. 2011. № 2 (24), ч. 3. С. 36-45.

9. Зубков В. И., Соломникова А. В., Егоренков А. А. Температурная зависимость концентрации носителей заряда в алмазе, легированном бором, с учетом зависимости энергии активации от концентрации // Известия СПбГЭТУ «ЛЭТИ». 2019. № 5. С. 5–12.

10. Dan'shina V. V., Kalistratova L. F. Comparative Analysis of the Thickness and Electrical Conductivity of Thin Chalcogenide Semiconductor Films // Physics of the Solid State. 2017. Vol. 59, no. 1. P. 172–175. DOI:10.1134/S106378341701005X.

11. Abbassi A., Zarhri Z., Azahaf C., Benyoussef A. Boltzmann equations and ab initio calculations: comparative study of cubic and wurtzite CdSe // SpringerPlus. 2015. Vol. 4. P. 543. DOI: 10.1186/s40064-015-1321-z.

12. II-VI Semiconductor Materials and their Applications // By ed. Maria C. Tamargo. 2002. 240 p. DOI: 10.1201/9780203751305.

13. Danshina V. V., Kalistratova L. F. Gas environment type and pressure influence on the semiconductor thin films electrical properties // Dynamics of Systems, Mechanisms and Machines (Dynamics). 2016. P. 1-5. DOI: 10.1109/Dynamics. 2016. P. 7818998.

 Миркин Л. И. Справочник по рентгеноструктурному анализу поликристаллов. Москва: Изд-во физ-мат. лит., 1961.
863 с.

15. Таблицы физических величин: справ. / Под ред.
И. И. Кикоина. Москва: Атомиздат, 1976, 1006 с.

ДАНЫШИНА Валентина Владимировна, кандидат химических наук, доцент (Россия), доцент кафедры физики Омского государственного технического университета, г. Омск. SPIN-код: 6854-5827 AuthorID: 622292 ORCID: 0000-0001-7797-5234 Адрес для переписки: danshina_v@mail.ru

Для цитирования

Данышина В. В. Характеристики электрических свойств нанокристаллических систем селенидов цинка и кадмия // Омский научный вестник. 2022. № 4 (184). С. 70-74. DOI: 10.25206/1813-8225-2022-184-70-74.

Статья поступила в редакцию 14.06.2022 г. © В. В. Даньшина

74