нейронных структур. Екатеринбург: УрО РАН, 2008. 85 с. ISBN 5-7691-1977-2.

11. Орлов А. И. Эконометрика. М.: Экзамен, 2014. 573 с. ISBN 5-472-00035-1.

12. Яновский Л. П., Буховец А. Г. Введение в эконометрику / под ред. Л. П. Яновского. 2-е изд., доп. М.: КноРус, 2007. 254 с. ISBN 978-5-85971-270-0.

ИВАНЧЕНКО Владимир Иванович, аспирант кафедры «Подвижной состав электрических железных дорог».

Адрес для переписки: ivanchenko-v.i@yandex.ru

КОМЯКОВ Александр Анатольевич, кандидат технических наук, доцент (Россия), доцент кафедры «Теоретическая электротехника».

Адрес для переписки: tskom@mail.ru

ПЛОТНИКОВ Юрий Викторович, инженер-исследователь Научно-исследовательской части (НИЧ). Адрес для переписки: omgups_lab@mail.ru ЭРБЕС Виктор Владимирович, кандидат технических наук, инженер-проектировщик НИЧ. Адрес для переписки: erbes-viktor@mail.ru

Для цитирования

Иванченко В. И., Комяков А. А., Плотников Ю. В., Эрбес В. В. Разработка интеллектуальной системы контроля энергетической эффективности эксплуатации электрооборудования предприятий // Омский научный вестник. 2018. № 1 (157). С. 54-58. DOI: 10.25206/1813-8225-2018-157-54-58.

Статья поступила в редакцию 24.11.2017 г.

© В. И. Иванченко, А. А. Комяков, Ю. В. Плотников, В. В. Эрбес

УДК 621.313.33 DOI: 10.25206/1813-8225-2018-157-58-62 В. А. КОПЫРИН О. В. СМИРНОВ

Тюменский индустриальный университет, г. Тюмень

ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ РЕЖИМОВ РАБОТЫ ПОГРУЖНОГО АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ

В статье представлены разработанная имитационная модель погружного асинхронного электродвигателя и результаты исследования режимов его работы. В качестве объекта исследования выбран электродвигатель номинальной мощностью 63 кВт. Построение модели проведено в программном комплексе Matlab/Simulink. Получены рабочие характеристики электродвигателя.

Ключевые слова: асинхронный двигатель, энергия, нефтяная скважина, имитационная модель, погружной электродвигатель.

Введение. В настоящее время свыше 75 % всей нефти в России добывается установками электроцентробежных насосов, что составляет 410,4 млн т [1, 2]. Погружной асинхронный электродвигатель (ПЭД), входящий в состав электротехнического комплекса установки электроцентробежного насоса для добычи нефти, является одним из основных его элементов. Из-за конструктивных особенностей ПЭД построение адекватной имитационной модели, описывающей с достаточной степенью точности электромеханические процессы в машине, является сложной задачей [3-5].

В работах [6, 7] приведены результаты моделирования ПЭД в составе установок электроцентробежных насосов как асинхронного двигателя специфической конструкции. Предложенные математические модели позволяют исследовать электрические и механические характеристики электродвигателя.

В свою очередь, использование метода имитационного моделирования, как частного случая математического, позволяет наглядно исследовать процессы функционирования технических и технологических объектов при минимальных материальных и трудовых затратах.

Целью публикации является сообщение о разработанной уточненной имитационной модели погружного асинхронного электродвигателя.

Теоретическая часть. В качестве объекта исследования выбран асинхронный электродвигатель ЭД-Я 63-117 М5В5 мощностью 63 кВт.

Для построения имитационной модели использованы готовые блоки электротехнических устройств, входящих в библиотеку Matlab/Simulink SimPowerSystem: three-phase programmable voltage source; asynchronous machines quirrel cage. Для измерения мгновенных значений токов и напряжений участков цепи использован блок three-phase U-I.

Модель механической части асинхронной машины описывается выражениями [8]:

$$\frac{d}{dt}\omega_{m} = \frac{1}{2H} \left(T_{e} - F \cdot \omega_{m} - T_{m} \right)$$

$$\frac{d}{dt}\theta_{m} = \omega_{m}$$
(1)

58

где ω_m — угловая частота вращения ротора; θ_m — угловое положение ротора; T_m — механический момент на валу; H — суммарная инерционная постоянная машины и нагрузки; F — суммарный коэффициент вязкого трения (машины и нагрузки).

Модель электрической части асинхронной машины описывается выражениями [8]:

$$u_{qs} = R_s \cdot i_{qs} + \frac{d}{dt} \psi_{qs} + \omega \cdot \psi_{qs}$$

$$u_{ds} = R_s \cdot i_{ds} + \frac{d}{dt} \psi_{ds} - \omega \cdot \psi_{qs}$$

$$0 = R'_r \cdot i'_{qr} + \frac{d}{dt} \psi'_{qr} + (\omega - \omega_r) \psi'_{dr}$$

$$0 = R'_r \cdot i'_{dr} + \frac{d}{dt} \psi'_{dr} - (\omega - \omega_r) \psi'_{dr}$$

$$T_e = 1_r 5 (\psi_{ds} \cdot i_{qs} - \psi_{qs} \cdot i_{ds})$$
(2)

где $u_{ds'}$ $i_{ds'}$ $u_{qs'}$ i_{ds} — проекция векторов напряжения и тока статора на соответствующие оси; i'_{dr} , i'_{qr} — проекция векторов тока ротора на соответствующие оси; R_{s} , L_{ls} , R'_{r} , L'_{lr} — активное сопротивление и индуктивность рассеяния статора и ротора соответственно; L_m — индуктивность цепи намагничивания; L_s , L'_{r} — полные индуктивности статора и ротора и ротора; ψ_{ds} , ψ_{qs} , ψ'_{dr} , ψ'_{qr} — проекция векторов

Потокосцепление статора и приведенное потокосцепление ротора, а также индуктивность статора и приведенная индуктивность ротора определяются по выражениям: $\psi_{ds} = L_s \cdot i_{qs} + L_m \cdot i'_{dr}$, $\psi_{qs} = L_s \cdot i_{qs} + L_m \cdot i'_{qr}$, $\psi'_{dr} = L'_r \cdot i_{dr} + L_m \cdot i_{ds}$, $\psi'_{qr} = L'_r \cdot i'_{qr} + L_m \cdot i_{qs}$, $L_s = L_{ls} + L_m$, $L'_r = L'_{ls} + L_m$ соответственно.

Начальные условия асинхронной машины могут быть определены по методике, изложенной в [9], или при помощи блока powergui [10].

Исходные данные для исследования приведены в табл. 1. Выражения для определения базисных единиц и их значения приведены в табл. 2.

В Matlab/Simulink модель асинхронной машины (asynchronous machines squirrel-cage) представлена Т-образной схемой замещения (рис. 1) и включает в себя электрическую часть и механическую. Все электрические переменные и параметры асинхронной машины приводятся к статору и двухфазной системе координат *d*, *q*.

На рис. 2 приведены рабочие характеристики электродвигателя ЭД-Я 63-117 М5В5, полученные в ходе приемосдаточных испытаний согласно протоколу № 29988 от 31.08.2015 г. ООО «Алмаз».

Результаты моделирования. В результате расчета электрических параметров электродвигателя

Таблица 2

Таблица 1

Характеристика	Значение
Номинальное напряжение $U_{g,{\scriptscriptstyle HOM'}}$ В	1040
Номинальная мощность на валу $P_{_{g, \text{ном}^{\dagger}}}$ кВт	63
Номинальная частота вращения $n_{_{H^{\prime}}}$ об/мин	2910
Номинальный КПД η, %	84,5
Номинальный коэффициент мощности соs ф _{д ном}	0,84
Номинальный ток I _{д.ном'} А	51
Номинальный момент М _{и'} Н×м	212
Кратность пускового тока k,	5,1
Кратность пускового момента $m_{_{II}}$	1,5
Кратность максимального момента $m_{\scriptscriptstyle max}$	2,3
Момент инерции <i>J</i> , кг×м ²	0,46
Номинальное скольжение $s_{\mu'}$ %	3,0
Критическое скольжение <i>s_{кp}</i> , %	23,8
Сопротивление обмоток статора R _{1g} при 84 °C, Ом	1,35

Технические характеристики погружного электродвигателя

Базисные	единицы
----------	---------

Параметр	Расчетное выражение	Значе- ние	Еди- ницы изме- рения
Мощность	$S_{\tilde{o}} = \frac{S_{g.HOM}}{m} = \frac{88757}{3}$	29586	BA
Напряжение	$U_{\tilde{\sigma}} = \frac{U_{g.\text{Hom}}}{\sqrt{3}} = \frac{1040}{\sqrt{3}}$	600,4	В
Ток	$I_{\vec{o}} = \frac{S_{\vec{o}}}{U_{\vec{o}}} = \frac{29586}{600.4}$	49,3	А
Частота	$f_{\sigma} = f_1$	50	Гц
Полное со- противление	$Z_{\tilde{\sigma}} = \frac{U_{\tilde{\sigma}}}{I_{\tilde{\sigma}}} = \frac{600,4}{49,3}$	12,8	Ом
Активное со- противление	$R_{\vec{o}} = \frac{U_{\vec{o}}}{I_{\vec{o}}} = \frac{600,4}{49,3}$	12,8	Ом
Индуктив- ность	$L_{\vec{b}} = \frac{Z_{\vec{b}}}{2\pi \cdot f_{\vec{b}}} = \frac{12.8}{2 \cdot 3.14 \cdot 50}$	0,039	Гн
Угловая частота вра- щения маг- нитного поля статора	$\Omega_{\tilde{\sigma}} = \Omega_1 - \frac{2\pi \cdot f_1}{p} = \frac{2\pi \cdot 50 \cdot 1}{1}$	314,2	рад/с
Момент	$M_{\tilde{o}} = \frac{S_{\tilde{o}} \cdot m}{\Omega_{\tilde{o}}} = \frac{29586 \cdot 3}{314,2}$	282,5	Н×м

59

ЭЛЕКТРОТЕХНИКА. ЭНЕРГЕТИКА

Рис. 1. Схема замещения электродвигателя

Рис. 2. Рабочие характеристики электродвигателя (экспериментальные)

Таблица 3

Параметры схемы замещения электродвигателя в абсолютных и относительных единицах

Параметр	В физических единицах, Ом	В относительных единицах, o.e.
Активное сопротивление обмотки статора	$R_{1g} = 1,35$	$\dot{R_{1g}} = \frac{R_{1g}}{Z_{6}} = \frac{1,35}{12,8} = 0,105$
Индуктивное сопротивление обмотки статора	$X_{1g} = 0,995$	$\dot{X_{1g}} = \frac{X_{1g}}{Z_{\tilde{\sigma}}} = \frac{0.995}{12.8} = 0.077$
Приведенное активное сопротивление обмотки ротора	$R'_{2g} = 0,676$	$\dot{R}_{2g} = \frac{R_{2g}}{Z_{\delta}} = \frac{0.676}{12.8} = 0.053$
Приведенное индуктивное сопротивление обмотки ротора	$X'_{2g} = 0,995$	$\dot{X}_{2g} = \frac{X_{2g}}{Z_{\delta}} = \frac{0.995}{12.8} = 0.077$
Индуктивное сопротивление контура намагничивания	$X_{mg} = 21,05$	$\dot{X}_{mg} = \frac{X_{mg}}{Z_{\tilde{o}}} = \frac{21,05}{12,8} = 1,64$

по методике, изложенной в [9, 10], и сопоставления их с экспериментальными данными получены параметры уточненной Т-образной схемы замещения исследуемого электродвигателя, выраженные в абсолютных и относительных единицах (табл. 3). Имитационная модель электродвигателя приведена на рис. 3. Погружной электродвигатель подключен к трехфазному синусоидальному источнику напряжения 1040 В, частотой 50 Гц. Для определения значений полной, активной, реактивной мощностей и коэффициента мощности сети используется блок вычисления мощности (БВМ).

Рис. 3. Имитационная модель электродвигателя

Таблица 4

ОМСКИЙ НАУЧНЫЙ ВЕСТНИК № 1 (157) 2018

~							
C	равнение	экспе	риментальных	и	полученных	харак	теристик

Mc, %	Ско	орость, об	/мин		Ток, А		Потре м	бляемая а ощность, 1	ктивная кВт	Коэффициент мощности cos φ		
	1	2	Δ, %	1	2	Δ, %	1	2	Δ, %	1	2	Δ, %
40	2943	2936	0,1	30,2	31,9	- 5,3	31,9	31,8	0,1	0,56	0,55	1,8
60	2911	2903	0,3	36,5	37,4	-2,4	46,4	46,3	0,2	0,70	0,69	1,4
80	2882	2869	0,4	44,1	44,2	-0,2	61,8	61,3	0,8	0,77	0,77	0,3
100	2844	2827	0,6	53,0	52,4	1,1	77,2	76,9	0,4	0,82	0,82	0,68
120	2811	2788	0,8	61,7	61,0	1,2	93,1	93,3	-0,2	0,85	0,85	-0,2

М, Н∙м

800 700

В результате моделирования прямого пуска погружного асинхронного электродвигателя получены зависимости угловой частоты вращения ротора (рис. 4) и электромагнитного момента от времени (рис. 5) при приложении нагрузки в виде вентиляторного момента 212 Н м, соответствующего форме

600 500 400 300 200 100 0 -100 0.1 0,2 0,3 0,4 0,5 0 0,6 0,7 t. c

кривой механической характеристики электроцентробежного насоса.

На рис. 6 приведены графики изменения токов в статоре и роторе электродвигателя в момент пуска и установившегося режима. Получены зависимости потребляемого тока *I*, момента *M*, оборотов *n*, коэффициента мощности *cos* φ и коэффициента полезного действия η в функции мощности на валу *P*₂ (рис. 7).

Обсуждение результатов. Анализ полученных данных показал, что разработанная имитационная модель ПЭД ЭД-Я 63-117 М5В5 с достаточной степенью точности воспроизводит характеристики

Рис. 7. Рабочие характеристики погружного электродвигателя (имитационные)

электродвигателя в установившемся режиме. В номинальном режиме различие между экспериментальными данными и расчетными для тока составляет 1,1 %, для потребляемой активной мощности — 0,4 %. Максимальная погрешность с учетом допустимых погрешностей измерений на испытательных стендах — не более 0,5 %, соответствующая области малых нагрузок, составляет для тока минус 5,8 % и уменьшается с увеличением нагрузки до 1,6 %.

В результате исследования работы ПЭД на вентиляторную нагрузку установлено, что номинальная скорость вращения ротора достигается через 0,5 секунды после запуска и составляет 2844 об/мин (рис. 4). Кривая электромагнитного момента (рис. 5) с 0 по 0,3 секунды имеет колебательный характер, что соответствует переходному режиму работы. Начиная с момента времени 0,5 секунды, электродвигатель переходит в установившийся режим работы. Анализ кривых токов (рис. 6) в электродвигателе показал, что ток в роторе имеет высокую частоту колебаний между 0 и 0,4 секунды. Ток в статоре во время пуска достигает значения 256,9 А и снижается до 50,5 А в установившемся режиме работы. Кратность пускового тока составляет 5.08, что практически соответствует паспортным данным.

В ходе верификации рабочих характеристик ПЭД (рис. 7) установлено, что полученные характеристики с достаточной степенью точности отображают физические процессы в исследуемом электродвигателе.

Вывод. Разработанная имитационная модель адекватно отображает электромеханические процессы погружного асинхронного электродвигателя. Адекватность модели подтверждена сравнением полученных данных с экспериментальными рабочими характеристиками электродвигателя.

Библиографический список

1. Ивановский В. Н., Сабиров А. А., Деговцов А. В. [и др.]. Вопросы энергоэффективности установок электроприводных центробежных насосов // Оборудование и технологии для нефтегазового комплекса. 2016. № 4. С. 25–30.

2. Шевченко С. Д., Якимов С. Б., Ивановский В. Н. [и др.]. Разработка алгоритма расчета дебита нефтяных скважин при их эксплуатации УЭЦН // Оборудование и технологии для нефтегазового комплекса. 2013. № 6. С. 90-91.

3. Vivek V., Uma G., R. P. Kumudini Devi, Chellamuthu C. Performance of induction motor driven submersible pump using Matlab/Simulink // International Conference on Power System Technologies 2002. Proceedings PowerCon. 2002. Vol. 2. P. 765–768.

4. Ozpineci B, Tolbert Leon M. Simulink implementation of induction machine model – a modular approach // Electric Machines and Drives Conference, 2003. IEMDC'03. IEEE International. 2003. Vol. 2. P. 728–734. DOI: 10.1109/ IEMDC.2003.1210317.

5. Rameshrabhu S, Dr. Deivasundari P. Efficiency Prediction of ESP through Mathematical Modeling for PV Applications // International Journal of Engineering Research and General Science. 2015. Vol. 3, Issue 2, Part 2. P. 494-504.

6. Бирюков С. В., Ковалев А. Ю., Ерёмин Е. Н., Хамитов Р. Н. Математическое моделирование погружных асинхронных электрических двигателей в составе установок электроцентробежных насосов // Омский научный вестник. 2012. № 1 (107). С. 186–188.

7. Ковалёв А. Ю. Моделирование погружных асинхронных электрических двигателей в составе установок электроцентробежных насосов: дис. ... канд. техн. наук. Омск, 2010. 157 с.

8. Веников В. А. Переходные электромеханические процессы в электрических системах. 4-е изд., перераб. и доп. М.: Высшая школа, 1985. 536 с.

9. Терёхин В. Б. Моделирование систем электроприводов в Simulink (Matlab 7.0.1). Томск: Изд-во ТПУ, 2010. 292 с.

10. Черных И. В. Моделирование электротехнических устройств в MATLAB. SimPowerSystems и Simulink. М.: ДМКПресс, 2007. 288 с. ISBN 5-94074-395-1.

КОПЫРИН Владимир Анатольевич, специалист отдела развития научных инициатив.

Адрес для переписки: kopurinva@qmail.com

СМИРНОВ Олег Владимирович, доктор технических наук, профессор (Россия), профессор кафедры «Электроэнергетика».

Адрес для переписки: oleg_smirnov_1940@mail.ru

Для цитирования

Копырин В. А., Смирнов О. В. Имитационное моделирование режимов работы погружного асинхронного электродвигателя // Омский научный вестник. 2018. № 1 (157). С. 58-62. DOI: 10.25206/1813-8225-2018-157-58-62.

Статья поступила в редакцию 22.12.2017 г. © В. А. Копырин, О. В. Смирнов