

АО «НПО Лавочкина», Московская область, г. Химки Омский государственный технический университет, г. Омск

ОСОБЕННОСТИ КОНТАКТИРОВАНИЯ ПРОЗРАЧНЫХ И ВЫСОКОПРОЧНЫХ ИЗМЕРИТЕЛЬНЫХ НАКОНЕЧНИКОВ ПРИБОРОВ АКТИВНОГО КОНТРОЛЯ РАЗМЕРОВ С ИЗДЕЛИЯМИ В ПРОЦЕССЕ ИХ ШЛИФОВАНИЯ

Статья посвящена анализу нагрузочной способности измерительных наконечников приборов активного контроля (ПАК) размеров с изделиями при их механическом контактировании. Рассчитывается значение глубины вдавливания в изделие измерительных наконечников, приводящее к образованию погрешности измерения. Рассмотрены прозрачные и высокопрочные материалы для изготовления измерительных наконечников.

Определен режим механического взаимодействия для экспериментальных исследований особенностей контактирования сапфирового наконечника и фрезы из быстрорежущей стали и рассчитано значение удельной энергии при таком контактировании. Показано, что возникающие при этом нагрузки, имея ≈40 кратный запас прочности и соответствуя режиму квазипластичности, не приводят к хрупкому разрушению.

Ключевые слова: активный контроль, контактные измерения, бесконтактные измерения, размер изделия, корунд, сапфир, наконечник.

Введение. Современные тенденции автоматизации производства [1-5] в ракетно-космической отрасли и приборо-, станко-, машиностроении обусловливают использование приборов активного контроля (ПАК) [1-4] размеров изделий, и в частности гибридных лазерных ПАК, повышающих производительность измерительных операций на металлорежущих станках до 2-5 раз. Такие ПАК могут работать как с механическим контактированием, так и бесконтактно [5, 6] за счет использования измерительных наконечников (в дальнейшем — наконечники) из прозрачных и высокопрочных материалов. Их первые экземпляры были разработаны в 2013 году для измерения размеров сложных изделий, например, с прерывистой поверхностью, такие как сверла, фрезы, развертки ит.п.

Процесс механического контактирования является центральным для контактных измерений ПАК. Изучение всех его особенностей содержит потенциальные возможности улучшения тактико-технических характеристик ПАК. Этот вопрос не до конца рассмотрен в научной литературе, и данная статья призвана устранить этот пробел.

1. Прозрачные и высокопрочные материалы для наконечников ПАК. Наконечники ПАК могут быть изготовлены из следующих материалов: алмаз, эльбор (боразон, кубонит, кингсонгит, киборит), стишовит, карбид кремния (карборунд, муассанит), фианит, корунды (сапфир, рубин), оксинитрид алюминия. В табл. 1 для этих материалов, а также быстрорежущих и инструментальных сталей, используемых для изготовления инструмента, указаны основные данные, используемые в последующих расчетах: химическая формула, модуль упругости *E*, коэффициент Пуассона *v*, микротвердость *H*_{мт}.

2. Определение режима механического взаимодействия наконечника и изделия. Ранее в контактных ПАК использовались твердосплавные непрозрачные наконечники, в основном из непрозрачного эльбора, зарекомендовавшие себя, в соответствии с механическими характеристиками, очень хорошо. Однако для гибридных ПАК требуются наконечники не только из высокопрочных, но и прозрачных материалов для работы без хрупкого разрушения в режиме длительного ударного контактирования с изделием, имеющим прерывистую поверхность. Поиск таких материалов с выполнением таких требований предполагает описание природы механического контактирования. Так, расчет и анализ последствий ударного механического контактирования прозрачных наконечников с выступами изделия с прерывистой поверхностью можно сделать, допустив близость характера этого

Таблица 1

Прочностные параметры материалов для изготовления наконечников, а также быстрорежущих и инструментальных сталей

Nº	Материал	Материал Химическая формула Модуль <i>E</i> ,		Коэффициент Пуассона v	Микротвердость <i>Н_{мт},</i> ГПа
1	Алмаз	С	950	0,07	84-98
2	Эльбор	BN	720	0,14	80-90
3	Стишовит	Стишовит SiO ₂ 450 0,22		0,22	32-33
4	Карбид кремния	SiC	375	0,15	33-36
5	Фианит	Фианит ZrO ₂ (Zr _{0,8} Ca _{0,2} O _{1,92}) 200-370 0,26-0,36		12	
6	Корунды	Al ₂ O ₃	350	0,18	20-23
7	Оксинитрид алюминия	AlON (Al ₂₃ O ₂₇ N ₅)	323	0,24	18
8	Быстрорежущие стали	Fe с добавками	220	0,23	8,5-9,0
9	Инструментальные стали	Fe с добавками	200	0,3	8,5

Таблица 2

Режимы и граничные условия механического взаимодействия наконечника и изделия

№	Режимы механического взаимодействия наконечника и изделия	Граничные условия
1	Режим упругого деформирования материала $W_{_{ynp}}$	$W_{ynp} = \frac{\tau_n^2}{2E}$
2	Режим хрупкого разрушения $W_{_{xp}}$	$W_{\rm xp} = \frac{\sigma_p^2}{2E}$
3	Режим квазипластичности $W_{_{K\!S}}$	$W_{ynp} \leq W_{\rm KB} \leq W_{\rm Kp}$

процесса к шлифованию хрупких изделий, подробно рассмотренных в [7, 8]. При этом можно принять, что выступы изделия эквивалентны зернам шлифовального круга. С учетом этого допущения и в зависимости от удельной энергии контактирования W_x возможны три состояния поверхностного слоя материалов, включающее два крайних и одно промежуточное с соответствующими энергиями: упругое деформирование материала $W_{ynp'}$ режимы хрупкого разрушения W_{xp} и квазипластичности W_{ya} .

Полный диапазон значений удельной энергии упругой деформации W имеет три поддиапазона для трех режимов работы и состояний поверхностного слоя наконечника [7, 8] при механическом воздействии (табл. 2).

Примечание: τ_n — предел Пайерлса согласно соответствует началу движения дислокаций материала и определяет границу перехода от упругого деформирования материала к режиму квазипластичности, рассчитываемый как $\tau_n = 3.6 \cdot 10^{-6} \cdot E$, с учетом чего дробь $\frac{\tau_n^2}{2E}$ преобразуется к виду $(3.6 \cdot 10^{-6} \cdot E) 2/2E \approx$ $\approx 6.5 \ 10^{-12}E$. Расчеты параметров по нагрузочной способности наконечников наиболее удобно провести для корундов, а именно, для сапфира как самого распространенного кристалла с превосходно отработанной технологией его искусственного производства. Этот материал занимает поз. 6, почти самое низкое положение среди выбранных высокопрочных прозрачных материалов, превосходя только оксинитрид алюминия. В [7] для сапфира уже определены предел Пайерлса $\tau_n = 126$ кПа, значения удельной энергии упругого деформирования $W_{xp} = 0.223$ Дж·м⁻³ и хрупкого разрушения $W_{xp} = 1.625 \cdot 108$ Дж·м⁻³. Соответственно, для расчета удельной энергии контактирования W_x можно использовать формулу, выведенную для режима шлифования сапфировой заготовки [7, 8]:

$$W_{\kappa} = \frac{\alpha \cdot k_{mp} \cdot F_z \cdot v \cdot t}{S_{cp} \cdot \delta}, \qquad (1)$$

где α — эмпирический коэффициент распределения энергии трения между изделием и шлифовальным инструментом принимается равным 0,5, k_{mp} = коэффициент динамического трения, F_z —

V

усилие прижима за цикл обработки, v — скорость перемещения шлифовального инструмента относительно поверхности обрабатываемого изделия, t — время контакта обрабатываемой заготовки и шлифовального инструмента за цикл обработки, S_{cp} — средняя площадь контакта обрабатываемой заготовки и шлифовального инструмента за цикл обработки, δ — глубина резания за цикл обработки.

Допустив близость характера воздействия шлифовальным инструментом и фрезой, использованной в экспериментальных исследованиях (рис. 1) [9] с учетом заложенной более 50-кратной перегрузки, можно оценить значение нагрузок W и их последствия на корундовый наконечник. Итак, имеем $\alpha = 0,5;$ средняя площадь контакта наконечника с резцом фрезы определяется шириной ленточки ≈ 1 мм и шириной торца сапфирового стержня 5 мм и в итоге равна 5·10⁻⁶ м. Коэффициент трения между сапфиром и нержавеющей сталью 0,15, линейная скорость перемещения резка фрезы диаметром 15 мм при числе оборотов 1000 об/мин составляет ≈ 0,8 м/с и, соответственно, время прохождения резца фрезы по линии контакта наконечника длиной в 660 мкм [9] соответствует
 \approx 0,82·10·3 с. Глубину дефектов структуры кристаллической решетки можно оценить, как минимум, в 3-4 раза больше, чем в [7], из-за существенно большей нагрузки, так что δ≈4·10-4 м.

И при подстановке всех этих исходных данных в формулу (4) получаем

$$W_{\kappa} = \frac{0.5 \cdot 0.15 \cdot 150 \cdot 0.8 \cdot 0.82 \cdot 10^{-3}}{5 \cdot 10^{-6} \cdot 4 \cdot 10^{-4}} = 3.7 \cdot 10^{6} \, \text{Ta.}$$

Полученное значение меньше максимально допустимого значения $W_{xp} = 1,625 \cdot 10^8 \ Дж \cdot M^{-3}$, и это означает, что характер ударного механического контактирования сапфирового, и вообще корундовых наконечников с выступами изделия, соответствует режиму квазипластичности, не приводя к хрупкому разрушению. При этом отношение $W_{xp}/W_{k} = 44$ и свидетельствует о наличие более чем 40-кратного запаса прочности при использовании корундовых наконечников при контактных измерениях. Такой результат близок к рассчитанному ранее в работе [6] по альтернативной независимой методике 29-кратному запасу прочности. Различие составляет всего около 35 %, подтверждая корректность принятых допущений и достоверность расчетов.

Полученный результат частично можно распространить и на новый высокопрочный и оптически прозрачный керамический материал оксинитрид алюминия (ALON-керамика). По прочностным параметрам ALON-керамика, созданная и запатентованная в начале 2000-х годах в США, и выпускаемый под торговой маркой ALON^{тм}, немного уступает корундам и всем остальным материалам, расположенным в поз. 1–5 (табл.1).

К сожалению, на данный момент этот материал остается пока еще малораспространенным и экзотическим для многих исследователей и для него пока не получены экспериментальные данные, подобно проведенным ранее в [9]. Это не позволяет сформировать окончательное суждение со стопроцентной уверенностью о возможности использования ALON-керамики для наконечников ПАК. Однако превышение прочностных свойств корундов над оксинитридом алюминия является небольшим (табл. 1), поэтому можно допу-

Рис. 1. Эксперимент по определению возможности использования сапфирового наконечника для контактных измерений в ПАК [9]

стить, что для нее также будет выполняться режим квазипластичности при механическом контактировании с изделиями в процессе активного контроля с некоторым уменьшением запаса прочности.

3. Расчет погрешности механического контактирования наконечника и контролируемого изделия в режиме квазипластичности. Значение погрешности механического контактирования $\Delta I_{MK'}$ вызванной вдавливанием наконечника в изделие для разных сочетаний их материалов (табл. 1), можно рассчитать на основе методики, приведенной в [10].

3.1. Особенности методики расчета погрешности механического контактирования. Итак, погрешность механического контактирования будет определяться следующим образом:

для одноконтактного метода измерения $\Delta l_{\alpha \kappa}$

$$\Delta I_{\rm ok} = \Delta I_{\rm mk}; \tag{2}$$

для двухконтактного метода измерения Δl_{ax}

$$\Delta I_{ak} = 2\Delta I_{kk}.$$
 (3)

Для расчета значения $\Delta I_{_{NK}}$ принимается, что характер контактных деформаций шероховатых поверхностей ($R_a > 0,16$ мкм) наконечника и изделия является пластическим и допускающим использование следующего выражения:

$$\Delta I_{_{MK}} = 3,4 \cdot 0,95 \cdot R_a \sqrt[3]{\frac{P_c}{P_r}} \approx 3,23 R_a \sqrt[3]{\frac{P_c}{P_r}}, \qquad (4)$$

где $R_a = R_{1a} + R_{2a}$ — среднее арифметическое отклонение профиля шероховатых поверхностей, P_r — давление в пределах площади контакта, P_c давление (отношение усилия к контурной площади контакта), определяемое как

$$P_{c} = \frac{0.36}{\sqrt[3]{(Q_{cym}R_{B})^{2}}} \sqrt[3]{\frac{\Delta F_{uy}}{n_{B}}},$$
(5)

где ΔF_{ay} — изменение измерительного усилия наконечника, $n_{_B}$ — количество контактирующих волн в зоне контакта (для сферического и плоского наконечников при активном контроле в процессе шлифования $n_{_B}$ =1), $Q_{_{CYM}}$ — упругая постоянная контактирующих материалов, определяемая как

Значения погрешности механического контактирования *I*_{мк} от измерительного усилия *F*_{иу} наконечников из высокопрочных и оптически прозрачных материалов на изделие из быстрорежущей стали

N⁰	Измерит-ное усилие $F_{_{uy'}}$ Н	Погрешность механического контактирования $l_{_{\scriptscriptstyle M\!X}}$, мкм							
		Алмаз	Эльбор	Стишовит	Карбид кремния	Фианит	Корунды	Оксинитрид алюминия	
1	0,5	1,190	1,175	1,142	1,148	1,132	1,120	1,113	
2	1	1,285	1,269	1,233	1,240	1,223	1,210	1,202	
3	1,5	1,344	1,327	1,290	1,297	1,279	1,266	1,257	
4	2	1,388	1,371	1,332	1,339	1,321	1,307	1,298	
5	2,5	1,423	1,405	1,365	1,373	1,354	1,340	1,331	
6	3	1,452	1,434	1,393	1,401	1,382	1,367	1,358	
7	3,5	1,477	1,459	1,417	1,425	1,406	1,391	1,382	
8	4	1,499	1,480	1,438	1,446	1,427	1,412	1,402	
9	4,5	1,519	1,500	1,457	1,466	1,445	1,430	1,421	
10	5	1,537	1,517	1,474	1,483	1,462	1,447	1,437	

Таблица 4

Значения погрешности механического контактирования $I_{_{MK}}$ от измерительного усилия $F_{_{MY}}$ наконечников из высокопрочных и оптически прозрачных материалов на изделие из инструментальной стали

Nº	Измерит-ное усилие F _{иу} , Н	Погрешность механического контактирования $l_{_{_{MK'}}}$ мкм							
		Алмаз	Эльбор	Стишовит	Карбид кремния	Фианит	Корунды	Оксинитрид алюминия	
1	0,5	1,178	1,164	1,132	1,113	1,120	1,109	1,105	
2	1	1,272	1,257	1,223	1,202	1,210	1,198	1,193	
3	1,5	1,331	1,315	1,279	1,257	1,266	1,253	1,248	
4	2	1,374	1,358	1,321	1,298	1,307	1,294	1,289	
5	2,5	1,408	1,392	1,354	1,331	1,340	1,326	1,321	
6	3	1,437	1,420	1,382	1,358	1,367	1,354	1,348	
7	3,5	1,462	1,445	1,406	1,382	1,391	1,377	1,371	
8	4	1,484	1,466	1,427	1,402	1,412	1,398	1,392	
9	4,5	1,503	1,486	1,445	1,421	1,430	1,416	1,410	
10	5	1,521	1,503	1,462	1,437	1,447	1,433	1,427	

$$Q_{cym} = \frac{1 - v_{\mu\alpha\kappa}^2}{E_{\mu\alpha\kappa}} + \frac{1 - v_{\mu3g}^2}{E_{\mu3g}}, \qquad (6)$$

где $E_{usg'}$ $E_{нак}$ и $v_{нак'}$ v_{usg} — модули упругости и коэффициенты Пуассона материалов, $R_b = \frac{R_{1b} \cdot R_{2b}}{R_{1b} + R_{2b}}$ средний радиус волны контактирующих поверхностей.

В зависимости от соотношения P_c и $\frac{H_{_{MM}}}{3}$ значение P_r рассчитывается по разным формулам из системы уравнений:

$$P_{r} = \begin{cases} H_{m}, \text{ при условии } P_{c} \leq \frac{H_{mm}}{3}, \\ P_{c} - 0.4\sqrt{\frac{H_{mm}^{3}}{P_{c}}}, \text{ при условии } P_{c} \geq \frac{H_{mm}}{3}, \end{cases}$$
(7)

где $H_{_{MM}}$ — меньшее значение микротвердости контактирующих материалов, как правило, соответствующее контролируемой детали.

3.2. Расчет погрешности механического контактирования. Итак, в соответствии с формулами (4)—(7) были рассчитаны значения механического контактирования $\Delta I_{\rm MK}$ для одноконтактного метода

1.350 1,300 1.250 1,200 1,150 1,100 Измерительное 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 усилие F_{иу}, Н Рис. 2. Зависимости погрешности механического контактирования l от измерительного усилия $F_{_{\rm Hy}}$ наконечников из высокопрочных и оптически прозрачных материалов на изделие из быстрорежущей стали Погрешность механического

и оптически прозрачных материалов на изделие из быстрорежущей стали

измерения при условии $R_a \approx 1$ мкм при изменении измерительного усилия F_{uy} на поверхность в диапазоне от 0,5 до 5 Н для наконечников, изготовленных из алмаза, эльбора, стишовита, карбида кремния, фианита, корунда и оксинитрида алюминия, контактирующих с изделиями из быстрорежущей и инструментальной стали соответственно. Результаты расчетов представлены в табл. 3, 4 и изображены графически на рис. 2, 3.

Погрешность механического контактирования

l_{мк}, мкм 1,550

1,500

1,450

1,400

Как видно из данных в этих таблицах и построенных графиков, их положение достаточно кучное. Для максимального измерительного усилия для контактных измерений в 3 Н [6] диапазон изменения погрешности механического контактирования $\Delta l_{_{MK}}$ наконечников из разных материалов: алмаза, эльбора, стишовита, карбида кремния, фианита, корунда не превышает ≈ 0,1 мкм.

Заключение.

1. Подтвержден режим квазипластичности с отсутствием хрупкого разрушения наконечников, изготовленных из таких прозрачных и высокопрочных материалов, как алмаз, эльбор, стишовит, карбид кремния, фианит и корунд, в процессе активного контроля размеров изделий с измерительным усилием ≈ 3 Н.

2. Ввиду близости прочностных характеристик оксинитрида алюминия к корунду сделано допущение о высокой степени вероятности существования режима квазипластичности с отсутствием хрупкого разрушения для наконечников из этого материала.

эльбор

стишовит

фианит

корунды

карбид кремния

оксинитрид алюминия

алмаз

3. Погрешность механического контактирования $\Delta l_{_{\rm MK}}$ нелинейно зависит от измерительного усилия F_{uv}^{m} . Максимальное значение ΔI_{mk} при измерительном усилии ≤ 3 Н для наконечников, изготовленных из алмаза, эльбора, стишовита, карбида кремния, фианита, корунда и оксинитрида алюминия, не превышает 1.5 мкм.

4. Для измерительных усилий в диапазоне ≤ 3 Н, являющемся рекомендуемым для контактных измерений, диапазон изменения погрешности механического контактирования $\Delta l_{_{MK}}$ для изделия из быстрорежущей и инструментальной стали и наконечников из алмаза, эльбора, стишовита, карбида кремния, фианита, корунда и оксинитрида алюминия ≤ 0,1 мкм. Это значение, как правило, до 10 раз меньше основной погрешности измерений гибридных ПАК, поэтому ею можно пренебречь, фактически подтверждая независимость точности контактных измерений ПАК от материала наконечника.

Библиографический список

1. Волосов С. С., Педь Е. И. Приборы для автоматического контроля в машиностроении. М.: Машиностроение, 1970. 310 с.

2. Кондашевский В. В., Лотце В. Активный контроль размеров деталей на металлорежущих станках. Омск: Зап.-Сиб. кн. изд-во, Омское отд-ние, 1976. 431 с.

3. Высоцкий А. В., Соболев М. П., Этингоф М. И. Активный контроль в металлообработке. М.: Изд-во стандартов, 1979. 175 с.

4. Сайт АО «НИИизмерения». URL: http://www.micron. ru/production/active_instruments/bv-4304/ (дата обращения: 10.02.2018).

5. Пат. 2557381 Российская Федерация, МПК В 24 В49/00, G01 B7/12. Способ активного контроля линейных размеров в процессе обработки изделия и устройство для его реализации / Леун Е. В., Леун А. В.; заявл. 28.11.2013; опубл. 20.07.2015, Бюл. № 20.

6. Леун Е. В. Разработка приборов активного контроля размерных параметров изделий с использованием сапфировых измерительных наконечников // Омский научный вестник. 2016. № 4 (148). С. 123-127.

7. Пат. 2418669 Российская Федерация, МПК В 24В 1/00, В 24В 51/00. Способ шлифования изделий из сверхтвердых и хрупких материалов / Гридин О. М., Теплова Т. Б.; № 2009145164/02; заявл., 07.12.09; опубл. 20.05.11, Бюл. № 14.

8. Соловьев В. В. Повышение эффективности прецизионной обработки заготовок из лейкосапфира: дис. ... канд. тех. наук: 05.02.07. Брянск, 2012. 68 с.

9. Леун Е. В., Шулепов А. В. Исследование и разработка сапфировых измерительных наконечников для приборов активного контроля размерных параметров изделий // Омский научный вестник. 2017. № 3 (153). С. 91–95.

 Леун В. И. Повышение эффективности технологии изготовления и точности измерения линейных размеров прецизионных деталей приборов, машин и изделий инструментального производства средствами автоматического контроля: дис. ... д-ра техн. наук: 05.11.14, 05.11.01. СПб., 1994. 420 с.

ЛЕУН Евгений Владимирович, кандидат технических наук, ведущий инженер АО «НПО Лавочкина».

SPIN-код: 6060-8056

AuthorID (РИНЦ): 367560

AuthorID (SCOPUS): 57200722184

ЛЕУН Владимир Исидорович, доктор технических наук, профессор секции «Метрология и приборостроение» кафедры «Нефтегазовое дело, стандартизация и метрология» Омского государственного технического университета. AuthorID (РИНЦ): 684649

AuthorID (SCOPUS): 56556954500

Адрес для переписки: stankin1999@mail.ru

Для цитирования

Леун Е. В., <u>Леун В. И.</u> Особенности контактирования прозрачных и высокопрочных измерительных наконечников приборов активного контроля размеров с изделиями в процессе их шлифования // Омский научный вестник. 2018. № 4 (160). С. 134—139. DOI: 10.25206/1813-8225-2018-160-134-139.

Статья поступила в редакцию 21.06.2018 г. © Е. В. Леун, <u>В. И. Леун</u>