DOI: 10.25206/1813-8225-2018-160-119-123

Омский государственный университет им. Ф. М. Достоевского, г. Омск

ОПРЕДЕЛЕНИЕ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ ОМИЧЕСКИХ КОНТАКТОВ К ПОЛУПРОВОДНИКОВЫМ ПЛАСТИНАМ **МЕТОДОМ КОКСА—СТРЕКА**

Рассмотрен модифицированный вариант метода Кокса-Стрека, который позволяет уменьшить количество фронтальных контактов на тестовом образце до 2 и одновременно исключить операцию экстраполяции графиков при определении удельного контактного сопротивления ρ_{κ} . Показано, что вклад контактного сопротивления R_{κ} в полное сопротивление R_{τ} тестовой структуры принимает более высокие значения, когда диаметр d фронтального контакта лежит в интервале 40-1040 мкм, что способствует более эффективному процессу контроля удельного сопротивления омических контактов к полупроводниковым пластинам.

Ключевые слова: омические контакты, полупроводниковая пластина, измерение контактного сопротивления, метод Кокса-Стрека, оптимизация изме-

Введение. К настоящему времени выполнено много работ, посвященных измерению удельного контактного сопротивления ρ_{K} [Ом·см²] омических контактов к полупроводникам, так как этот вопрос имеет важное значение в технологии полупроводниковых приборов и интегральных микросхем [1-12]. В этих работах используются различные методы измерения удельного контактного сопротивления $\rho_{\kappa'}$ которые можно разделить на вертикальные (в токопрохождении принимает участие вся толща полупроводниковой пластины, контакты сформированы на противоположных сторонах пластины) и планарные (контакты сформированы на одной стороне пластины).

К вертикальным методам относится метод Кокса – Стрека, который реализуется на структуре, содержащей несколько омических контактов в виде дисков с различными диаметрами на фронтальной стороне полупроводниковой пластины и сплошной тыльный контакт на ее обратной стороне [6-12]. Определение удельного контактного сопротивления р, в этом методе выполняют путем измерения на различных фронтальных контактах полного сопротивления структуры фронтальный контактполупроводниковая пластина-тыльный контакт, включающего в себя сопротивления фронтального и тыльного контактов и сопротивление растекания в толще полупроводника. После этого, используя методы подбора формул (по кривым) (curve fitting methods), подбирают аппроксимирующую линейную функцию, с помощью которой определяют удельное контактное сопротивление ρ_{κ} .

К недостатку работ [6, 8, 10] следует отнести ограниченную информацию о методике реализации методов подбора формул (по кривым) при определении удельного контактного сопротивления $\rho_{\kappa'}$ что ограничивает использование метода Кокса-

В настоящей работе предложен модифицированный вариант метода Кокса—Стрека, который позволяет уменьшить количество фронтальных контактов на тестовом образце до 2 и одновременно исключить операцию экстраполяции графиков при определении удельного контактного сопротивле-

Теория метода измерения удельного сопротивления омических контактов к полупроводниковым **пластинам.** Согласно [6], полное сопротивление R_{τ} структуры фронтальный контакт - полупроводниковая пластина-тыльный контакт можно описать следующим выражением:

$$R_T = \frac{4\rho_K}{\pi d^2} + \rho \cdot f(d, h) + R_0, \qquad (1)$$

где $\rho_{\scriptscriptstyle K}$ — удельное контактное сопротивление; ρ удельное сопротивление полупроводника; d — диаметр фронтального контакта; h — толщина пластины полупроводника; $R_{\scriptscriptstyle 0}$ — сопротивление тыльного контакта; f(d, h) — корректирующая функция, учитывающая нелинейную зависимость сопротивления полупроводника от толщины его слоя и диаметра контакта в результате растекания тока под фронтальным контактом.

Первое из слагаемых в формуле (1) отвечает за вклад контактного сопротивления в общее сопротивление структуры, второе — за вклад сопротивления растекания.

В работах [6, 7] предложены две формулы для корректирующей функции f(d, h):

корректирующая функция Кокса-Стрека [6]

$$f_{KS}(d,h) = \frac{1}{\pi d} arc \tan\left(\frac{4h}{d}\right)$$
 (2)

и корректирующая функция Брукса-Меттса [7]

$$f_{BM}(d,h) = \frac{1}{2d} \left\{ \int_{0}^{\infty} \frac{\sin x}{x} J_{1}(x) \coth\left(\frac{2xh}{d}\right) dx \right\}^{-1}$$
(3)

где $J_{_1}(x)$ — функция Бесселя первого порядка.

Функция Брукса – Меттса дает более точные результаты при малых значениях контактного сопротивления, однако менее удобна в расчете.

Если в соотношении (1) слагаемое R_0 мало, то, пренебрегая величиной R_0 , после умножения формулы (1) на площадь контакта $S_K = \pi d^2/4$ получим:

$$R_T S_K = \rho_K + \rho \cdot S_K f(d, h). \tag{4}$$

Из соотношения (4) следует, что величина R_TS_K есть линейная функция от величины $S_Kf(d,h)$, при этом удельное сопротивление ρ равно тангенсу угла наклона графика зависимости R_TS_K от $S_Kf(d,h)$, а удельное контактное сопротивление ρ_K равно координате точки пересечения этого графика с осью R_TS_K . На рис. 1 представлены графики зависимости R_TS_K от $S_Kf(d,h)$, расчитанные по формулам (1), (2) и (4) для значений h=0,04 см, $\rho=10$ Ом·см, $\rho_K=0$,05 Ом·см², $\rho_K=0$,1 Ом·см², $S_K=0$,0113-0,2826) см². Этот вариант метода подбора формул позволяет определять не только ρ_{K^1} но и удельное сопротивление ρ полупроводника.

Если в соотношении (1) нельзя пренебрегать слагаемым $R_{\scriptscriptstyle 0}$, то формулу (1) можно записать в виде, использованном в работе [9]:

$$R_T - \rho \cdot f(d, h) = R_0 + \rho_K \frac{1}{S_K}. \tag{5}$$

Из соотношения (5) следует, что величина $[R_T-\rho\cdot f(d,h)]$ есть линейная функция от величины $1/S_{K'}$, при этом удельное контактное сопротивление ρ_K равно тангенсу угла наклона графика зависимости $[R_T-\rho\cdot f(d,h)]$ от $1/S_{K'}$ а величина R_0 равна координате точки пересечения этого графика с осью $[R_T-\rho\cdot f(d,h)]$. На рис. 2 представлены графики зависимости $[R_T-\rho\cdot f(d,h)]$ от $1/S_{K'}$ расчитанные по формулам (1), (2) и (5) для значений $R_0=0$, $R_0=2$ Ом, h=0.04 см, $\rho=10$ Ом·см, $\rho_K=0.1$ Ом·см², $S_K=(0.0113-0.2826)$ см².

Графики, представленные на рис. 1 и 2, иллюстрируют применение двух вариантов метода подбора формул для определения удельного контактного сопротивления ρ_{K} и содержат большое количество точек, соответствующих различным произвольным значениям диаметра d и площади S_{K} фронтальных контактов. При расчете этих графиков сначала выполнен расчет соответствующих значений полного сопротивления R_{T} контактов по формулам (1) и (2) при заданных значениях h, $\rho_{K'}$ ρ и $R_{0'}$ а затем на основе полученных значений R_{T} рассчитаны графики зависимости $R_{T}S_{K}$ от $S_{K}f(d,h)$ по формуле (4) (рис. 1) и зависимости $[R_{T}-\rho\cdot f(d,h)]$ от $1/S_{K}$ по формуле (5) (рис. 2).

При практическом использовании рассматриваемого метода измеряют полное сопротивление

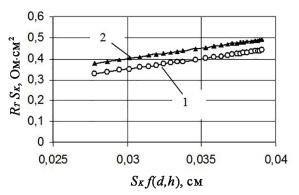


Рис. 1. Зависимость R_rS_κ от $S_\kappa f(d,\,h)$, расчитанная по формулам (1), (2) и (4) для значений h=0,04 см, ρ =10 Ом·см, 1 — ρ_κ =0,05 Ом·см²; 2 — ρ_κ =0,1 Ом·см²; S_κ =(0,0113-0,2826) см²

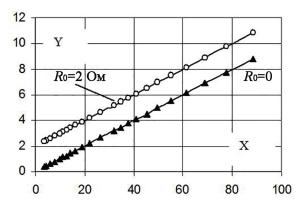


Рис. 2. Зависимость $\mathbf{Y} = [\mathbf{R}_{\mathrm{T}} - \boldsymbol{\rho} \cdot \mathbf{f} \ (\mathbf{d}, \ h)] \ (\mathbf{OM}) \ \text{от } \mathbf{X} = 1/\mathbf{S}_{\mathrm{K}} (1/\mathbf{c} \mathbf{m}^2),$ расчитанная по формулам (1), (2) и (5) для значений $\mathbf{R}_{\mathrm{0}} = \mathbf{0}$, $\mathbf{R}_{\mathrm{0}} = \mathbf{0}$ Ом, $\mathbf{h} = \mathbf{0}, \mathbf{0} \mathbf{4}$ см, $\boldsymbol{\rho} = \mathbf{10}$ Ом-см, $\boldsymbol{\rho}_{\mathrm{K}} = \mathbf{0}, \mathbf{1}$ Ом-см², $\mathbf{S}_{\mathrm{K}} = (\mathbf{0}, \mathbf{0} \mathbf{1} \mathbf{1} \mathbf{3} - \mathbf{0}, \mathbf{2} \mathbf{8} \mathbf{2} \mathbf{6})$ см²

 $R_{\scriptscriptstyle T}$ нескольких фронтальных контактов, а затем определяют $\rho_{\scriptscriptstyle K'}$ используя формулу (4) (или (5)) и заданные значения $d,\ h,\ \rho.$ При этом количество фронтальных контактов на тестовом образце ограничено: 4 контакта (с $S_{\scriptscriptstyle K}$ равной 32, 16, 8 и 4 мм²) на тестовом образце использовано в работе [6], 4 контакта на образце — в работе [10] и 11 контактов на образце в работе [11].

Если использовать модифицированный в настоящей работе вариант метода определения удельного контактного сопротивления $\rho_{K'}$ то количество фронтальных контактов на тестовом образце можно уменьшить до 2 и одновременно исключить операцию построения графика. Сущность модифицированного варианта метода определения удельного контактного сопротивления ρ_{K} заключается в следующем. Для полных сопротивлений R_{T1} и R_{T2} первого и второго фронтальных контактов с диаметрами соответственно d_1 и d_2 ($d_1 \neq d_2$) можно записать соотношения:

$$R_{T1} - \rho \cdot f_1(d_1, h) = R_0 + \rho_K \frac{1}{S_{K1}}.$$
 (6)

$$R_{T2} - \rho \cdot f_2(d_2, h) = R_0 + \rho_K \frac{1}{S_{K2}},$$
 (7)

где $S_{{\scriptscriptstyle K1}}=\pi d_1^2/4$ и $S_{{\scriptscriptstyle K2}}=\pi d_2^2/4$ — площади первого и второго контактов с диаметрами $d_{{\scriptscriptstyle 1}}$ и $d_{{\scriptscriptstyle 2}}$ соответственно, $f_{{\scriptscriptstyle 1}}(d_{{\scriptscriptstyle 1}},\ h)$ и $f_{{\scriptscriptstyle 2}}(d_{{\scriptscriptstyle 2}},\ h)$ — корректирующие

функции для первого и второго контактов, рассчитываемые по формуле (2) (или по формуле (3)) для заданных значений h, d₁ и d₂ соответственно. Если d₃ d₄ d₅ то, вычитая формулу (7) из формулы

(6), получим соотношение:

$$(R_{T1} - R_{T2}) - \rho \cdot [f_1(d_1, h) - f_2(d_2, h)] =$$

$$= \rho_K \left(\frac{1}{S_{K1}} - \frac{1}{S_{K2}}\right). \tag{8}$$

Из соотношения (8) следует формула для расчета удельного контактного сопротивления ρ_{κ} :

$$\rho_{K} = \frac{S_{K1}S_{K2}\{(R_{T1} - R_{T2}) - \rho \cdot [f_{1}(d_{1}, h) - f_{2}(d_{2}, h)]\}}{(S_{K2} - S_{K1})}, \quad (9)$$

где R_{71} и R_{72} — измеренные полные сопротивления первого и второго фронтальных контактов с диаметрами соответственно d_1 и d_2 ($d_1 \neq d_2$); S_{K1} и S_{K2} — площади первого и второго контактов; ρ — известное удельное сопротивление полупроводника; $f_1(d_1, h)$ и $f_2(d_2, h)$ — корректирующие функции для первого и второго контактов, расчитываемые по формуле (2) (или по формуле (3)) для заданных значений h, d_1 и d_2 соответственно.

Вариант метода подбора формул позволяет определять не только $\rho_{K'}$ но и удельное сопротивление ρ полупроводника следующим образом. Для полных сопротивлений R_{T1} и R_{T2} первого и второго фронтальных контактов с диаметрами соответственно d_1 и d_2 $(d_1 \neq d_2)$ можно записать соотношения:

$$R_{T_1}S_{K_1} - S_{K_1}R_0 = \rho_K + \rho \cdot S_{K_1}f_1(d_1, h). \tag{10}$$

$$R_{T2}S_{K2} - S_{K2}R_0 = \rho_K + \rho \cdot S_{K2}f_2(d_2, h). \tag{11}$$

Вычитая формулу (11) из формулы (10), получим соотношение:

$$(R_{T1}S_{K1} - R_{T2}S_{K2}) - (S_{K1} - S_{K2})R_0 =$$

$$= \rho \cdot [S_{K1}f_1(d_1, h) - S_{K2}f_2(d_2, h)]. \tag{12}$$

Из соотношения (12) следует формула для расчета удельного сопротивления ρ полупроводника:

$$\rho = \frac{\left(R_{T1}S_{K1} - R_{T2}S_{K2}\right) - \left(S_{K1} - S_{K2}\right)R_0}{\left[S_{K1}f_1(d_{11}h) - S_{K2}f_2(d_{21}h)\right]},$$
(13)

где $S_{K1}=\pi d_1^2/4$ и $S_{K2}=\pi d_2^2/4$ — площади первого и второго контактов с диаметрами d_1 и d_2 соответственно, $f_1(d_1,\ h)$ и $f_2(d_2,\ h)$ — корректирующие функции для первого и второго контактов, рассчитываемые по формуле (2) (или по формуле (3)) для заданных значений $h,\ d_1$ и d_1 соответственно; R_0 — сопротивление тыльного контакта.

Если в соотношении (13) величина R_0 мала, то, пренебрегая этой величиной (R_0 =0), формулу для расчета удельного сопротивления ρ полупроводника можно записать в виде:

$$\rho = \frac{\left(R_{T1}S_{K1} - R_{T2}S_{K2}\right)}{\left[S_{K1}f_{1}(d_{1}, h) - S_{K2}f_{2}(d_{2}, h)\right]}.$$
(14)

Следует отметить, что формулы (9), (13) и (14) могут быть применены не только к тестовым образцам с двумя фронтальными контактами, но и к образцам с большим числом контактов, имеющих различные диаметры. При этом применение

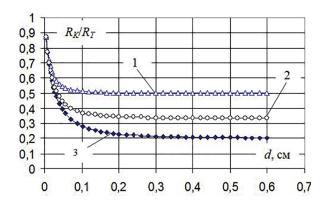


Рис. 3. Зависимости отношения $R_{\rm K}/R_{\rm T}$ от диаметра фронтального контакта d для пластин c толщинами: 1 — 100 мкм, 2 —200 мкм и 3 — 400 мкм

этих вариантов, например, к образцам с четырьмя, пятью или шестью контактами приводит к увеличению числа возможных вычислений ρ_{κ} (или ρ) (по сравнению с числом измерений полного сопротивления R_{τ} контактов): на образце с четырьмя контактами в 1,5 раза, на образце с пятью контактами в 2 раза, а на образце с шестью контактами в 2,5 раза. Это обусловлено тем, что число возможных парных комбинаций контактов с различными диаметрами в каждой паре, используемых для расчета ρ_K (или ρ) по формуле (9) (или (13, 14)), равно 6 в образце с четырьмя контактами, в образце с пятью контактами равно 10, а в образце с шестью контактами равно 15, что обеспечивает возможность более эффективного усреднения результатов вычислений и меньшую погрешность измерения на одном образце.

Следует отметить, что процесс контроля удельного сопротивления омических контактов к полупроводниковым пластинам существенно облегчается при использовании расчетных данных, касающихся контактного R_{K} и полного R_{T} сопротивлений (а также их отношений R_{K}/R_{T}) тестовой структуры с различными диаметрами фронтальных контактов и с различной толщиной полупроводниковой пластины, которые приведены в табл. 1 и на рис. 3, где эти данные рассчитаны для омических контактов с удельным сопротивлением $\rho_{K} = 0,001~{\rm Cm}\cdot{\rm Cm}^2$ по формулам (1) и (2) для пластин с толщинами: 100 мкм, 200 мкм и 400 мкм, имеющих удельное сопротивление $\rho = 0,1~{\rm Cm}\cdot{\rm Cm}$, при этом в формуле (1) пренебрегли малой величиной R_{o} .

Из приведенных в табл. 1 данных следует, что величина ожидаемого в эксперименте полного сопротивления R_{τ} тестовой структуры с различными толщинами полупроводниковой пластины очень сильно уменьшается при увеличении диаметра d фронтального контакта, что обусловлено сильным уменьшением как контактного сопротивления $R_{\kappa'}$ так и сопротивления растекания $\rho \cdot f(d,h)$ с ростом диаметра d фронтального контакта. При этом, как это видно из рис. 3, вклад контактного сопротивления $R_{\scriptscriptstyle K}$ в полное сопротивление $R_{\scriptscriptstyle T}$ тестовой структуры наибольший при значениях диаметра d фронтального контакта, лежащих в интервале 40-1040 мкм. Более высокий вклад контактного сопротивления $R_{\scriptscriptstyle K}$ в полное сопротивление $R_{\scriptscriptstyle T}$ тестовой структуры, а также более высокие значения полного сопротивления $R_{\scriptscriptstyle T}$ тестовой структуры при значениях диаметра d фронтального контакта, лежащих в интервале

Контактное $R_{_T}$ и полное $R_{_T}$ сопротивления тестовой структуры с различными диаметрами фронтальных контактов и с различной толщиной полупроводниковой пластины, имеющей удельное сопротивление ρ =0,1 Ом·см ($\rho_{_K}$ =0,001 Ом·см²)

<i>d</i> , см	$R_{k'}$ Om	R ₇ , OM			$R_{\scriptscriptstyle k} / R_{\scriptscriptstyle T}$		
		<i>h</i> =0,01см	<i>h</i> =0,02см	<i>h</i> =0,04см	<i>h</i> =0,01см	<i>h</i> =0,02см	<i>h</i> =0,04см
0,004	79,618	91,331	91,726	91,925	0,872	0,868	0,866
0,008	19,904	25,372	25,761	25,959	0,785	0,773	0,767
0,016	4,976	7,345	7,710	7,904	0,677	0,645	0,630
0,032	1,244	2,136	2,429	2,611	0,582	0,512	0,476
0,04	0,796	1,421	1,678	1,852	0,560	0,475	0,430
0,048	0,553	1,014	1,237	1,402	0,545	0,447	0,394
0,056	0,406	0,759	0,952	1,108	0,535	0,427	0,367
0,072	0,246	0,470	0,616	0,753	0,523	0,399	0,326
0,088	0,165	0,319	0,432	0,551	0,516	0,381	0,299
0,104	0,118	0,230	0,319	0,422	0,512	0,370	0,279
0,2	0,032	0,063	0,092	0,139	0,503	0,345	0,229
0,3	0,0141	0,0282	0,0418	0,0661	0,501	0,338	0,214
0,4	0,0080	0,0159	0,0237	0,0383	0,501	0,336	0,208
0,5	0,0051	0,0102	0,0152	0,0248	0,501	0,335	0,205
0,6	0,0035	0,0071	0,0106	0,0174	0,500	0,335	0,204

40-1040 мкм, способствуют более эффективному процессу контроля удельного сопротивления омических контактов к полупроводниковым пластинам.

Заключение. Таким образом, в настоящей работе рассмотрены два варианта метода подбора формул для определения удельного контактного сопротивления ρ_{κ} омических контактов к полупроводниковым пластинам методом Кокса-Стрека. Получены формулы для расчета как удельного контактного сопротивления $\rho_{\scriptscriptstyle K}$ омических контактов, так и удельного сопротивления р полупроводника, которые позволяют уменьшить количество фронтальных контактов на тестовом образце до 2 и одновременно исключить операцию экстраполяции графиков при определении р, и р. При этом применение этих формул к образцам с числом контактов больше 3 позволяет увеличить число возможных вычислений $\rho_{_K}$ (или ρ) (по сравнению с числом измерений полного сопротивления $R_{\scriptscriptstyle T}$ контактов), что обеспечивает более эффективное усреднение результатов вычислений и уменьшение погрешности измерений на одном образце.

Библиографический список

- 1. Berger H. H. Contact resistance and contact resistivity // Journal of The Electrochemical Society. 1972. Vol. 119, no. 4. P. 507-514. DOI: 10.1149/1.2404240.
- 2. Reeves G. K. Specific contact resistance using a circular transmission line model // Solid-State Electronics. 1980. Vol. 23, no. 5. P. 487 490. DOI: 10.1016/0038-1101(80)90086-6.

- 3. Cohen S. S. Contact resistance and methods for its determination // Thin Solid Films. 1983. Vol. 104, Issue 3-4. P. 361-379. DOI: 10.1016/0040-6090(83)90577-1.
- 4. Кудрик Я. Я. Удельное сопротивление омических контактов в структурах металл—полупроводник // Петербургский журнал электроники. 2010. № 1. С. 25-40.
- 5. Holland A. S., Pan Y., Alnassar M.S.N., Luong S. Circular test structure for determining the specific contact resistance of ohmic contacts // Facta Universitatis. Series: Electronics and Energetics. 2017. Vol. 30, no. 3. P. 313-326. DOI: 10.2298/FUEE1703313H.
- Cox R. H., Strack H. Ohmic contacts for GaAs devices // Solid-State Electronics. 1967. Vol. 10, Issue 12. P. 1213-1218. DOI: 10.1016/0038-1101(67)90063-9.
- 7. Brooks R. D., Mattes H. G. Spreading resistance between constant potential surfaces // Bell Labs Technical Journal. 1971. Vol. 50, no. 3. P. 775 784. DOI: 10.1002/j.1538-7305.1971.tb01882.x.
- 8. Edwards W. D., Hartman W. A., Torrens A. B. Specific contact resistance of ohmic contacts to gallium arsenide // Solid-State Electronics. 1972. Vol. 15. P. 387—392. DOI: 10.1063/1.1657234.
- 9. Shepela A. The specific contact resistance of Pd2Si contacts on n- and p-Si // Solid-State Electronics. 1973. Vol. 16. P. 477 481. DOI: 10.1016/0038-1101(73)90185-8.
- 10. Singh R. K. Low resistance ohmic contact to n-GaAs // MSAIJ. 2010. Vol. 6, Issue 1. P. 89-92.
- 11. Gupta R. P., White J. B., Iyore O. D. [et al.]. Determination of contact resistivity by the Cox and Strack method for metal contacts to bulk bismuth antimony telluride // Electrochemical and Solid-State Letters. 2009. Vol. 12, Issue 8. P. H302—H304. DOI: 10.1149/1.3143918.
- 12. Thomas G. Allen, James Bullock, Peiting Zheng [et al.]. Calcium contacts to n-type crystalline silicon solar cells $\prime\prime$

Бурлаков Р. Б. Определение удельного сопротивления омических контактов к полупроводниковым пластинам мето-

дом Кокса-Стрека // Омский научный вестник. 2018. № 4

(160). C. 119-123. DOI: 10.25206/1813-8225-2018-160-119-123.

Адрес для переписки: burlakovrb@e-mail.omsu.ru

DOI: 10.25206/1813-8225-2018-160-123-126

УДК 681.2:678.5

Статья поступила в редакцию 23.03.2018 г. © Р. Б. Бурлаков

В. Ф. КОВАЛЕВСКИЙ С. Б. СКОБЕЛЕВ1 Г. Г. БУРЫЙ²

¹Омский государственный технический университет,

г. Омск

²Сибирский государственный автомобильно-дорожный университет,

ПРИМЕНЕНИЕ **ЭЛЕКТРОГИДРАВЛИЧЕСКОГО** ЭФФЕКТА ДЛЯ СНЯТИЯ ОБЛОЯ С ВЫВОДОВ ПЛАСТМАССОВЫХ ДЕТАЛЕЙ

В работе проведен обзор методов очистки пластмассовых деталей от облоя. Рассмотрен принцип работы установки для получения электрогидравлического эффекта Л. А. Юткина. Представлена конструкция опытной установки, а также сменных приспособлений, применяемых для снятия облоя с выводов пластмассовых деталей. Приведены результаты экспериментальных исследований применения электрогидравлического эффекта для удаления облоя.

Ключевые слова: выводы пластмассовых деталей, электрогидравлический эффект, облой, приспособление для очистки, искровой разряд, наклеп.

Введение. Очистка выводов пластмассовых деталей от облоя является трудоёмкой и мало механизированной операцией. Облой часто приходится снимать с поверхностей сложной конфигурации, что резко ограничивает возможность автоматизации процесса очистки. В настоящее время распространение получили следующие способы очистки пластмассовых деталей:

1. Галтовка — этот процесс отличается простотой. Обрабатываемые детали находятся во вращающемся барабане, облой снимается от взаимодействия деталей друг с другом и со стенками барабана [1, 2].

Недостатки галтовки:

- длительность процесса;
- часто галтовка позволяет провести только предварительную очистку деталей (некоторые детали вообще не обрабатываются галтовкой). Детали с оставшимся после галтовки облоем должны пройти окончательную доработку;
- при галтовке нарушается глянец на поверхности деталей, что не всегда допустимо.

- Абразивными кругами, скребками облой удаляется вращающимися абразивными кругами или поступательным перемещением скребков. Этим способом можно очищать поверхности только простой конфигурации.
- 3. В штампах облой срезается перемещением пуансона. Для каждого вида деталей необходим свой штамп, форма очищаемой поверхности должна быть простой. Поверхность после снятия облоя часто имеет сколы [3, 4].
- 4. Удаление облоя вручную при помощи напильников, ножей.

Этот способ дает качественную очистку, однако отличается низкой производительностью.

5. Для очистки выводов пластмассовых деталей от облоя применяется ультразвук. Детали находятся в озвучиваемой жидкости и подвергаются воздействию кавитации. Недостатком способа является то, что кавитация одновременно с облоем разрушает тело детали [5-7].

Таким образом, применяемые в настоящее время способы очистки пластмассовых деталей от облоя