В. Л. ФЕДОРОВ

Омский государственный технический университет, г. Омск

КРИТЕРИЙ ОПРЕДЕЛЕНИЯ ЧИСЛА ГАРМОНИК РЯДОВ ФУРЬЕ, АППРОКСИМИРУЮЩИХ НАПРЯЖЕНИЯ И ТОКИ ТРАНСФОРМАТОРА

Результаты измерений напряжений и токов трансформатора часто аппроксимируют рядами Фурье. Точность аппроксимации зависит от числа удерживаемых гармоник. В статье предложен критерий определения числа гармоник, который обеспечивает коэффициент корреляции между измерениями (в виде массивов цифровых данных) и их аппроксимацией рядами Фурье, равный единице. Полученная оценка относительной погрешности аппроксимации не превышает 0,31 %. Показана работоспособность критерия в диапазонах изменения суммарных коэффициентов гармонических составляющих тока (3,27...70,97) % и напряжения (0,19...9,29) %. Установлено, что снижение величины коэффициента корреляции тока до 0,996...0,947 (при уменьшении числа гармоник по сравнению с расчетным) приводит к увеличению оценки относительной погрешности аппроксимации до [8,27...29,65] %. Предложенный критерий может использоваться: а) при исследовании периодических установившихся процессов в трансформаторе как в режиме холостого хода, так и под нагрузкой; б) для определения динамических магнитных свойств магнитомягких материалов индукционным методом.

Ключевые слова: трансформатор, ряды Фурье, число удерживаемых гармоник, коэффициент корреляции, оценка относительной погрешности.

Введение. Измерение напряжений и токов трансформаторов часто производится цифровыми осциллографами. Основой их работы является преобразование входных аналоговых сигналов в массивы дискретных цифровых данных. Использование этих массивов с целью анализа установившихся периодических режимов работы трансформатора обусловливает необходимость обратного преобразования дискретных данных в непрерывные функции времени. В итоге конечные результаты измерений являются некоторыми аппроксимирующими функциями.

Аппроксимация периодических функций часто осуществляется рядами Фурье. Их применение для исследования режимов работы трансформаторов описано в большом количестве публикаций, например, [1-11]. Аппроксимируемыми функциями в этих работах являются: напряжения [1, 5, 7, 8], токи [1-4], [6], [7-11], напряженность магнитного поля [3], магнитная индукция [3, 5] однофазных [1, 2, 5, 6, 8, 9, 11] и трехфазных [3, 4, 7] трансформаторов.

Любая задача аппроксимации должна быть решена с заданной точностью, т.е. отклонение аппроксимирующей функции от фактической не должно превышать некоторой величины. Применительно к сочетанию «цифровой осциллограф ряды Фурье» результирующая погрешность зависит от ряда факторов, в том числе от погрешности аналого-цифрового преобразователя (АЦП), от наличия внешних электромагнитных помех во входном сигнале АЦП и от количества удерживаемых гармоник в ряде Фурье.

В свою очередь, погрешность цифрового осциллографа зависит от:

1) разрядности АЦП, следствием которой является т.н. ошибка квантования (шум квантования);

 дрожания фронта синхросигнала, следствием которого является т.н. апертурная погрешность.

Эти составляющие могут быть уменьшены рациональным выбором используемого осциллографа на этапе планирования проведения измерений. Дополнительное уменьшение погрешности осуществляет сам ряд Фурье с конечным числом гармоник. Это объясняется тем, что частота синхронизации и частота дрожания фронта синхросигнала, как правило, существенно больше частоты последней удерживаемой гармоники в ряде Фурье.

Важнейшей задачей обеспечения заданной точности аппроксимации является определение числа удерживаемых гармоник по некоторому критерию. Следствиями ошибочного выбора являются:

а) недопустимое увеличение погрешности из-за малого числа гармоник. Например, в работе [2] при аппроксимации тока используется сумма первой и третьей гармоник. Это может быть справедливо в случае, если сердечник трансформатора работает (перемагничивается) в узкой линейной зоне (вблизи начала координат) динамической кривой намагничивания. При насыщении сердечника и резком искажении формы тока потребуется большее число удерживаемых гармоник для достижения заданной точности;

б) неоправданное увеличение времени счета ЭВМ из-за избыточного числа гармоник. Примером такой работы является [4], в которой для расчета тока используется 6000 гармоник без какого-либо обоснования их количества.

Обзор публикаций по исследованию режимов работы трансформаторов с применением рядов Фурье показывает, что вопросы выбора числа удерживаемых гармоник по какому-либо условию и оценки точности результатов аппроксимации рассматриваются недостаточно полно либо игнорируются.

Наличие электромагнитных помех во входном сигнале АЦП, частота которых соизмерима с частотой полезного сигнала, делает невозможным точное определение фактической погрешности измерения. Это объясняется тем, что АЦП осуществляет преобразование не полезного сигнала, а суммы полезного сигнала с помехой. Поэтому возможно определение только оценки погрешности измерения. Несмотря на это, адекватность измеряемой величины (в виде массива цифровых данных на выходе АЦП) и результата аппроксимации рядом Фурье может быть проанализирована путем расчета коэффициента корреляции *R* между ними.

Постановка задачи. Целями данной статьи являются:

1. Установление критерия для определения числа удерживаемых гармоник напряжений и токов трансформатора. Проверка получаемых результатов (числа гармоник) путем расчета коэффициента корреляции и оценки относительной погрешности аппроксимации.

2. Проведение сопоставительного анализа результатов аппроксимации с числом гармоник по предлагаемому критерию и аппроксимации с произвольным (меньшим) числом гармоник. Для этого необходимо выполнить: а) исследование влияния максимального значения напряженности магнитного поля $H_{\rm max}$ и максимального значения собственной магнитной индукции сердечника B_{M} max' обусловленной его намагничиванием, на коэффициент корреляции и оценку относительной погрешности аппроксимации для произвольного числа удерживаемых гармоник; б) исследование влияния коэффициента корреляции на оценку относительной погрешной погрешности аппроксимации для произвольного числа удерживаемых гармоник; б) исследование влияния коэффициента корреляции на оценку относительной погрешности аппроксимации для произвольного го числа удерживаемых гармоник.

Решение поставленных задач осуществляется для того же образца трансформатора без нагрузки, как и в [12]. Сердечник трансформатора представляет собой броневой ленточный магнитопровод, выполненный из магнитомягкой стали. Обозначим *u*₁, *u*₂ — напряжения на первичной и вторичной обмотках соответственно, *i* — ток первичной обмотки. Число витков первичной обмотки $w_1 = 1430$. Трансформатор содержит несколько вторичных обмоток с различными числами витков $w_2 = 26$, 33, 51. В зависимости от величины входного напряжения u_1 вторичная обмотка выбиралась так, чтобы $|u_2| \le 10$ В. Активное сопротивление и индуктивность первичной катушки (без сердечника): $r_1 = 43,01$ Ом, $L_1 =$ = 48,6 · 10⁻³ Гн. Параметры магнитопровода: длина средней лини
и $l_{_{AV}}=$ 0,146 м; площадь поперечного сечения $S_c = 4,48 \cdot 10^{-4} \text{ м}^2$.

На первичную обмотку подавалось синусоидальное напряжение частотой f = 40 Гц. Измерение напряжений u_1 , u_2 и тока i (рис. 1) проводилось циф-

Рис. 1. Осциллограммы напряжений и₁, и₂ и тока і

ровым осциллографом и цифровым вольтметром при различных величинах действующего значения напряжения *U*1 на первичной обмотке.

Аналого-цифровой преобразователь осциллографа имеет разрядность 14 бит, частота дискретизации $f_{adc} = 40$ кГц. Данная частота f_{adc} обеспечивает 1000 измерений напряжения (тока) на одном периоде u_1 .

По мере возрастания напряжения U1 проводилось преднамеренное искажение его формы с целью увеличения искажения тока и проверки работоспособности предлагаемого критерия. Контроль степени искажения осуществлялся путем расчета суммарных коэффициентов гармонических составляющих напряжения первичной обмотки K_{U1} и тока K_r .

Отметим, что по стандартам [13] и [14] величина K_U не должна превышать 8 % для электрической сети напряжением 0,38 кВ и 1 кВ соответственно. Существуют различные оценки допустимых искажений тока, например, $K_I = 5$ % [15], $K_I = 10$ % [16].

Теория. Воспользуемся следующей формой записи ряда Фурье с конечным числом учитываемых гармоник

$$f(t) = \sum_{n=1}^{m} A_n \sin(n2\pi f t + \alpha_n)$$
 ,

где *п* — номер гармоники; *A_n*, *α_n* — амплитуда и начальная фаза *n*-й гармоники.

Из теоремы Котельникова (Найквиста – Шеннона) следует, что число удерживаемых гармоник ряда Фурье должно удовлетворять неравенству

$$m < \frac{f_{adc}}{2f} = 500 \,.$$

Полученное количество гармоник (500) является избыточным для аппроксимации напряжений и токов трансформатора. Для предварительного выбора значения m учтем рекомендации стандартов [13] и [15]. Так, для расчета суммарного коэффициента гармонических составляющих напряжения K_{u^r} согласно [13], необходимо учитывать 40 гармоник, а по требованиям [15] — 50 гармоник. Выбираем с некоторым запасом $m \le 65$. Отметим, что при необходимости величина m может быть увеличена.

Кроме того, учтем, что используемое напряжение u_1 и динамическая кривая намагничивания магнитомягкой стали сердечника трансформатора удовлетворяют условиям $u_1(t) = -u_1[t+(2t)^{-1}], B_{M_{\text{max}}}(H_{\text{max}}) = -B_{M_{\text{max}}}(-H_{\text{max}})$ и не имеют разрывов

производных. Поэтому ряды Фурье для аппроксимации массивов дискретных цифровых данных u_1 , u_2 , *i* должны состоять из нечетных гармоник.

Обозначим v — пока неизвестное число удерживаемых нечетных гармоник. Количество нечетных гармоник v и номер последней нечетной гармоники m связаны соотношением

$$m = 2v - 1$$

Обозначим аппроксимацию измеренных величин *u*₁, *u*₂, *i* рядами Фурье в виде

$$\begin{split} u_{1Fv}(t) &= \sum_{s=1}^{v} \sqrt{2} U \mathbf{1}_{(2s-1)} \sin \left[(2s-1) 2\pi f t + \beta \mathbf{1}_{(2s-1)} \right], \\ u_{2Fv}(t) &= \sum_{s=1}^{v} \sqrt{2} U \mathbf{2}_{(2s-1)} \sin \left[(2s-1) 2\pi f t + \beta \mathbf{2}_{(2s-1)} \right], \\ i_{Fv}(t) &= \sum_{s=1}^{v} \sqrt{2} I_{(2s-1)} \sin \left[(2s-1) 2\pi f t + \alpha_{(2s-1)} \right], \end{split}$$

где $U1_{(2s-1)}$, $U2_{(2s-1)}$, $I1_{(2s-1)}$, $\beta1_{(2s-1)}$, $\beta2_{(2s-1)}$, $\alpha_{(2s-1)}$ — действующие значения и начальные фазы гармоник напряжения и тока.

Вариация числа учитываемых нечетных гармоник приводит к изменению трех важных параметров периодической функции. Рассмотрим эти параметры на примере аппроксимации тока *i* (рис. 2).

1. Величина аргумента (времени), при которой функция становится равной нулю (при переходе из отрицательных значений в положительные). Обозначим эти моменты времени t_v^{u1} , t_v^{u2} , t_v^i для напряжений u_1 , u_2 и тока *i* соответственно. На рис. 2 приведены графики аппроксимации тока при произвольном значении v = 2, v = 29 и соответствующие моменты времени t_2^i , t_{29}^i .

2. Величина аргумента (времени), при которой функция принимает максимальное положительное значение. Обозначим эти моменты времени $t_{m,v}^{u1}$, $t_{m,v}^{u2}$, $t_{m,v}^{i}$, для напряжений u_1 , u_2 и тока i соответственно. На рис. 2 показаны моменты времени $t_{m,2}^{i}$, $t_{m,2}^{i}$.

3. Максимальное положительное значение функции. Обозначим эти величины $u_{1\max,v'}$ $u_{2\max,v'}$ $i_{\max,v'}$ для напряжений u_1 , u_2 и тока i соответственно. На рис. 2 показаны максимальные значения $i_{\max,2'}$ $i_{\max,20}$.

*i*_{max,29}. Введем относительные отклонения трех вышеперечисленных параметров для напряжений и тока:

$$\begin{split} \delta_{1}(v) &= \frac{t_{v}^{i} - t_{v-1}^{i}}{t_{v}^{i}}; \quad \delta_{2}(v) = \frac{t_{v}^{u1} - t_{v-1}^{u1}}{t_{v}^{u1}}; \\ \delta_{3}(v) &= \frac{t_{v}^{u2} - t_{v-1}^{u2}}{t_{v}^{u2}}; \quad \delta_{4}(v) = \frac{t_{m,v}^{i} - t_{m,v-1}^{i}}{t_{m,v}^{i}}; \\ \delta_{5}(v) &= \frac{t_{m,v}^{u1} - t_{m,v-1}^{u1}}{t_{m,v}^{u1}}; \quad \delta_{6}(v) = \frac{t_{m,v}^{u2} - t_{m,v-1}^{u2}}{t_{m,v}^{u2}}; \\ \delta_{7}(v) &= \frac{i_{\max,v} - i_{\max,v-1}}{i_{\max,v}}; \quad \delta_{8}(v) = \frac{u_{1\max,v} - u_{1\max,v-1}}{u_{1\max,v}}; \\ \delta_{9}(v) &= \frac{u_{2\max,v} - u_{2\max,v-1}}{u_{2\max,v}}. \end{split}$$

Рис. 2. Графики аппроксимации тока і с числом нечетных гармоник v = 2, v = 29

$$v = 2, 3...(m+1)/2.$$
 (1)

Формулировка критерия: выбираем такое количество гармоник *v* из диапазона (1), для которого одновременно выполняются условия:

$$|\delta_k(v)| \leq \delta_d$$
, $k = 1...3q$; (2)

$$\sum_{k=1}^{3q} \left| \delta_k(v) \right| = \min.$$
(3)

Здесь δ _ d — допустимая величина относительного отклонения, в относительных единицах или процентах; q — общее число измеренных напряжений и токов. В рассматриваемом случае q = 3.

Результаты экспериментов. Измерения проводились при величинах действующего значения напряжения на первичной обмотке

$$U1 = 50, 60...250 \text{ B.}$$
 (4)

Заданная величина допустимого относительного отклонения $\delta_d=0,05~$ %.

Определение числа учитываемых гармоник проводилось в два этапа. На первом этапе для каждого напряжения U1 из (4) рассчитывались величины $\delta_1(v)...\delta_9(v)$ для всех v из диапазона (1). Осциллограммы напряжений u_1, u_2 и тока *i*, а также графики относительных отклонений $\delta_1(v), \delta_4(v), \delta_7(v)$ приведены на рис. За, Зв и рис. Зб, Зг для действующих значений напряжения U1 = 50 В и U1 = 250 В соответственно.

На втором этапе по результатам расчета $\delta_1(v)...\delta_9(v)$ для каждого напряжения U1 (из (4)) выбирались все величины v, для которых выполнялось условие (2). Соответствующие им значения $|\delta_1(v)|...|\delta_9(v)|$ и суммы $\sum_{k=1}^{9} |\delta_k(v)|$ помещались в таблицы (например, см. табл. 1, U1 = 50 В). Окончательно из полученных таблиц выбирались искомые величины v удерживаемых гармоник, удовлетворяющие условию (3). Так, для напряжения U1 = 50 В получено значение v = 11 (выделено в табл. 1 полужирным шрифтом). В табл. 2 и табл. 3 приведены величины v для всех напряжений из диапазона (4).

Анализ точности результатов аппроксимации выполним на примере тока, т.к. его форма существенно искажается при насыщении сердечника. Обозначим Λi — размах колебаний результатов измерения тока (рис. 1). Графики i(t), $i_{Fv}(t)$, $i_{F2}(t)$ для напряжений U1 = 50 В и U1 = 250 В приведены на рис. 4в.

Обозначим отклонение результатов аппроксимации тока от измеренного значения

Рис. 3. Осциллограммы напряжений и тока (а), (в); зависимость относительных отклонений $\delta_1(v)$, $\delta_4(v)$, $\delta_7(v)$ от числа удерживаемых гармоник v = (m+1)/2 (б), (г)

Таблица 1

Результаты расчетов $|\delta_k(v)|$, удовлетворяющих условию (2); U1=50 В

v	$ \delta_1(v) , \%$	δ ₇ (v) , %	$ \delta_4(v) , \%$	δ ₂ (v) , %	δ ₈ (v) , %	δ ₅ (v) , %	δ ₃ (v), %	$ \delta_{9}(v) , \%$	δ ₆ (v) , %	$\sum_{k=1}^{9} \left \ \delta_k(\mathbf{v}) \ \right \ , \ \%$
10	3,44E-03	4,60E-03	3,45E-03	1,06E-02	3,03E-03	2,19E-02	1,08E-04	1,18E-03	2,12E-03	5,04E-02
11	5,98E-03	8,48E-03	3,24E-04	4,31E-03	3,18E-03	3,30E-04	2,35E-04	7,12E-04	2,82E-03	2,64E-02
12	1,21E-03	2,22E-03	4,35E-03	2,06E-02	5,13E-03	2,34E-02	6,44E-04	1,14E-03	9,14E-03	6,78E-02
13	3,61E-03	3,17E-03	2,49E-02	5,17E-03	5,06E-03	6,12E-03	2,43E-04	2,28E-04	4,41E-03	5,29E-02
16	4,09E-03	3,58E-04	4,44E-02	7,12E-03	2,81E-04	1,89E-02	4,93E-04	1,81E-03	1,36E-02	9,11E-02
21	1,91E-03	4,67E-03	4,74E-02	7,73E-03	9,34E-04	3,22E-02	4,05E-04	4,42E-03	1,92E-03	1,02E-01
22	4,50E-04	2,18E-03	2,05E-02	1,84E-02	2,87E-03	3,86E-02	5,59E-04	3,64E-04	1,83E-02	1,02E-01
23	9,15E-04	2,15E-03	3,38E-02	4,53E-03	7,56E-04	8,98E-03	1,04E-03	3,78E-04	3,21E-02	8,46E-02
27	1,12E-03	1,07E-03	2,34E-02	8,93E-03	3,05E-03	6,81E-03	2,47E-04	9,21E-04	4,11E-03	4,96E-02
28	6,55E-04	7,87E-04	1,42E-02	1,66E-02	1,66E-03	4,48E-02	5,38E-04	2,67E-03	4,56E-03	8,65E-02

$$\begin{split} \Delta i_{F_{V}}(t) &= i(t) - i_{F_{V}}(t), \\ \Delta i_{F_{2}}(t) &= i(t) - i_{F_{2}}(t), \end{split}$$

графики которых приведены на рис. 4б и рис. 4г. Очевидно, что отклонения $\Delta i_{Fv}(t)$, $\Delta i_{F2}(t)$ являются следствием шумов АЦП, электромагнитных помех и несоответствия форм измеряемого тока (в виде массива цифровых данных) и результата его аппроксимации рядом Фурье.

Обозначим $\Lambda \Delta i_{Fv}$, $\Lambda \Delta i_{F2}$ — размах отклонений результатов аппроксимации тока от измеренного значения (см. рис. 46 и рис. 4г).

Окончательно определим оценку относительных погрешностей аппроксимации как

$$\hat{\delta}i_{Fv} = \frac{\Lambda \Delta i_{Fv}}{\Delta i} \cdot$$

Для каждого напряжения U1 из (4) и соответствующего ему значения v, выбранного по предлагаемому критерию, были рассчитаны оценки относительных погрешностей δi_{Fv} , коэффициенты корреляции тока Ri_v и напряжений $Ru1_v$, $Ru2_v$ (табл. 2). С целью проведения сопоставительного анализа также были рассчитаны оценки относительных

Оценки	относительных	погрешностей	аппроксимации,	коэффициенты	корреляции

<i>U</i> 1, B	V	<i>Λі</i> , А	δ̂i _{Fv} , %	δ̂i _{F4} , %	δ̂i _{F3'} %	$\hat{\delta}i_{F2'}$ %	Ru1 _v	Ru2 _v	Ri _v	Ri_4	Ri ₃	Ri ₂
50	11	1,91E-02	0,25	0,27	0,34	0,67	1,00	1,00	1,00	1,00	1,00	1,00
60	13	2,31E-02	0,24	0,31	0,39	0,78	1,00	1,00	1,00	1,00	1,00	1,00
70	11	2,72E-02	0,19	0,27	0,41	0,88	1,00	1,00	1,00	1,00	1,00	1,00
80	28	3,15E-02	0,18	0,25	0,43	1,04	1,00	1,00	1,00	1,00	1,00	1,00
90	14	3,64E-02	0,13	0,21	0,41	1,15	1,00	1,00	1,00	1,00	1,00	1,00
100	28	4,17E-02	0,17	0,26	0,44	1,29	1,00	1,00	1,00	1,00	1,00	1,00
110	20	4,76E-02	0,14	0,23	0,43	1,40	1,00	1,00	1,00	1,00	1,00	9,999E-01
120	17	5,40E-02	0,23	0,36	0,55	1,54	1,00	1,00	1,00	1,00	1,00	9,999E-01
130	17	6,12E-02	0,17	0,33	0,52	1,69	1,00	1,00	1,00	1,00	1,00	9,999E-01
140	22	6,93E-02	0,17	0,34	0,58	1,86	1,00	1,00	1,00	1,00	1,00	9,999E-01
150	16	7,88E-02	0,19	0,40	0,68	2,13	1,00	1,00	1,00	1,00	1,00	9,998E-01
161	28	8,92E-02	0,12	0,42	0,82	2,49	1,00	1,00	1,00	1,00	1,00	9,998E-01
170	16	1,03E-01	0,26	0,55	1,10	3,14	1,00	1,00	1,00	1,00	1,00	9,997E-01
180	28	1,20E-01	0,23	0,71	1,49	4,08	1,00	1,00	1,00	1,00	9,999E-01	9,994E-01
190	27	1,42E-01	0,21	0,89	2,03	5,54	1,00	1,00	1,00	1,00	9,999E-01	9,989E-01
200	27	1,72E-01	0,15	1,32	3,01	7,70	1,00	1,00	1,00	9,999E-01	9,997E-01	9,978E-01
211	31	2,24E-01	0,17	2,14	4,88	11,46	1,00	1,00	1,00	9,998E-01	9,991E-01	9,948E-01
220	25	3,15E-01	0,20	3,30	7,56	16,59	1,00	1,00	1,00	9,995E-01	9,974E-01	9,879E-01
231	31	4,93E-01	0,31	4,51	10,43	22,34	1,00	1,00	1,00	9,987E-01	9,936E-01	9,736E-01
240	20	7,42E-01	0,31	6,10	12,90	26,53	1,00	1,00	1,00	9,978E-01	9,896E-01	9,591E-01
250	29	1,11E+00	0,30	8,27	15,42	29,65	1,00	1,00	1,00	9,962E-01	9,856E-01	9,465E-01

2.7e-03

1.8е-03 (У) 9е-04 0 -9е-04 О______

-1.8e-03

Рис. 4. Временные диаграммы

Таблица З

	r			1	
<i>U</i> 1, B	V	$K_{_{U1}},\%$	$K_{I'}$ %	<i>H</i> _{max'} А/м	$B_{_{M{ m max}'}}$ Тл
50	11	0,19	3,27	93,60	0,43
60	13	0,20	3,94	112,84	0,52
70	11	0,20	4,69	133,00	0,61
80	28	0,23	5,52	154,41	0,69
90	14	0,27	6,49	178,35	0,78
100	28	0,29	7,48	204,23	0,87
110	20	0,32	8,50	232,89	0,96
120	17	0,36	9,62	264,49	1,04
130	17	0,41	10,75	299,78	1,13
140	22	0,46	11,96	339,48	1,21
150	16	0,52	13,33	386,11	1,30
161	28	0,60	14,74	437,02	1,39
170	16	0,69	16,59	504,12	1,48
180	28	0,81	18,80	585,64	1,56
190	27	1,00	21,73	693,99	1,65
200	27	1,23	25,48	841,76	1,73
211	31	1,68	31,42	1097,46	1,81
220	25	2,43	39,95	1540,64	1,89
231	31	4,00	52,23	2416,54	1,96
240	20	6,18	62,63	3634,18	2,00
250	29	9,29	70,97	5413,96	2,02

Рис. 5. Графики табличных зависимостей $\mathbf{Ri}_{v}(\mathbf{H})$, $\mathbf{Ri}_{v}(\mathbf{B})$, $\hat{\delta i}_{Fv}(\mathbf{B})$ и результатов интерполяции

погрешностей и коэффициенты корреляции тока при произвольном числе учитываемых гармоник: для v = 2 (применяется в [2]), для v = 3 [3, 11] и для v = 4 [1, 9] (табл. 2).

Результаты расчета $K_{U1'}$, $K_{I'}$, $H_{max'}$, $B_{M,max}$ (табл. 3) заимствованы из [12] с незначительной коррекцией некоторых величин.

Результаты расчетов (табл. 2, табл. 3) использовались для интерполяции с помощью кубических сплайнов динамической кривой намагничивания $B_{M \max}(H_{\max})$, искомых зависимостей $R_{i2}(H)$, $R_{i3}(H)$, $R_{i4}(H)$, $\delta i_{F2}(H)$, $\delta i_{F3}(H)$, $\delta i_{F4}(H)$, а также $R_{i2}(B)$, $R_{i3}(B)$, $R_{i4}(B)$, $\delta i_{F2}(B)$, $\delta i_{F3}(B)$, $\delta i_{F4}(B)$ — рис. 5.

Графики $Ri_v(H)$, $Ri_v(B)$ и $\delta i_{Fv}(B)$ построены по табличным данным отрезками прямых линий. Показанная на рис. 5 индукция насыщения $B_{MS} = 2,2$ Тл приведена в табл. 3.

Из данных табл. 2, табл. 3 следует, что выбор v по предлагаемому критерию обеспечивает величины оценок относительной погрешности $\hat{\delta i}_{Fv} \leq 0,31$ %, коэффициентов корреляции $Ri_v = Ru1_v = Ru2_v = 1$ в диапазонах изменения индукции $0 < B_{\rm Mmax} \leq B_{\rm MS}$ и суммарных коэффициентов гармонических составляющих тока $K_I = (3,27...70,97)$ % и напряжения $K_{U1} = (0,19...9,29)$ %.

Величины $Ri_v = Ru1_v = Ru2_v = 1$ свидетельствуют о наличии положительной линейной связи между измерениями $u_1(t)$, $u_2(t)$, i(t) (в виде массивов цифровых данных на выходе АЦП) и результатами их аппроксимации рядами Фурье.

Результаты расчетов (табл. 2, табл. 3) показывают, что выбор меньшего числа гармоник по сравнению с расчетным v приводит: а) к выполнению неравенства $\hat{\delta}i_{Fv} < \hat{\delta}i_{F4} < \hat{\delta}i_{F3} < \hat{\delta}i_{F2}$ для любой величины максимальной индукции 0 < $B_{M \max} \leq B_{MS}$; б) к возрастанию оценок относительной погрешности тока $\hat{\delta}i_{F4}$, $\hat{\delta}i_{F2}$ при увеличении индукции $0 < B_{M \max} \leq B_{MS}$; в) к сужению диапазона изменения индукции $0 < B_{M \max} < B_{MS}$; в) к сужению диапазона изменения индукции $0 < B_{M \max} < B_{MS}$; в пределах которого коэффициенты корреляции $R_4 = 1$, $R_{13} = 1$, $R_{12} = 1$. Это объясняется увеличивающимся несоответствием форм измеряемого тока и результата его аппроксимации рядом Фурье при уменьшении числа удерживаемых гармоник.

По результатам расчетов (табл. 2, табл. 3) выполнена интерполяция кубическим сплайном зависимости $\hat{\delta}i_{F_2}(Ri_2)$, график которой приведен на рис. 6. На этом же рисунке представлены графики $\hat{\delta}i_{F_3}(Ri_3)$, $\hat{\delta}i_{F_4}(Ri_4)$, построенные по табличным данным отрезками прямых линий.

Известно, что изменение коэффициента корреляции в пределах $0,9 \le R < 1$ означает очень сильную взаимосвязь между переменными. Однако это не гарантирует малого значения оценки относительной погрешности (табл. 2). Так, минимальным значениям коэффициентов корреляции $R_{i2} = 0,9465$; $R_{i3} = 0,9856$; $R_{i4} = 0,9962$ соответствуют величины $\hat{\delta}i_{F2} = 29,65$ %; $\hat{\delta}i_{F3} = 15,42$ %; $\hat{\delta}i_{F4} = 8,27$ % соответственно.

Выводы и заключение. Предложен критерий определения числа удерживаемых гармоник рядов Фурье для аппроксимации напряжений и тока трансформатора. Использование критерия обеспечивает коэффициент корреляции, равный единице, между измерениями в виде массивов цифровых данных и их аппроксимацией рядами Фурье. Оценка относительной погрешности аппроксимации не превышает 0,31 %. Показана работоспособность критерия в диапазонах изменения суммарных ко-

эффициентов гармонических составляющих тока (3,27...70,97) % и напряжения (0,19...9,29) %. Установлено, что снижение величины коэффициента корреляции тока до 0,996...0,947 (при уменьшении числа гармоник по сравнению с расчетным) приводит к увеличению оценки относительной погрешности аппроксимации до (8,27...29,65) %. Это объясняется увеличивающимся несоответствием форм измеряемого тока и результата его аппроксимации рядом Фурье при уменьшении числа удерживаемых гармоник. Предложенный критерий может использоваться: а) при исследовании периодических установившихся процессов в трансформаторе как в режиме холостого хода, так и под нагрузкой; б) для определения динамических магнитных свойств магнитомягких материалов индукционным методом.

Библиографический список

1. Huang S.-R., Chung S. C., B.-N. Chen. A harmonic model for the nonlinearities of single-phase transformer with describing functions // IEEE Transactions on Power Delivery. 2003. Vol. 18, no. 3. P. 815–820. DOI: 10.1109/tpwrd.2003.813878.

2. Tanaka T., Hirakiet E., Ueda K. A novel detection method of active and reactive currents in single-phase circuits using the correlation and cross-correlation coefficients and its applications // IEEE Transactions on Power Delivery. 2007. Vol. 22, no. 4. P. 2450-2456. DOI: 10.1109/tpwrd.2007.905359.

3. Shinya K., Saito K. Influence of magnetization characteristics of materials on the iron loss of wound-core-type three-phase transformers // Electrical Engineering in Japan. 2009. Vol. 169, no. 2. P. 48-55. DOI: 10.1002/eej.20767.

4. Chiesa N., Hoidalen H. K. Analytical algorithm for the calculation of magnetization and loss curves of delta-connected transformers // IEEE Transactions on Power Delivery. 2010. Vol. 25, no. 3. P. 1620–1628. DOI: 10.1109/tpwrd.2010.2045771.

5. Koprivica B. M., Ioan D., Milovanovic A. [et al.]. Harmonic analysis and modelling of magnetisation process in soft ferromagnetic material // Facta Universitatis. Series Electronics and Energetics. 2016. Vol. 30, no. 1. P. 121–136. DOI: 10.2298/ fuee1701121k.

6. Mejia-Barron A., Valtierra-Rodriguez M., Granados-Lieberman D. [et al.]. Experimental data-based transient-stationary current model for inter-turn fault diagnostics in a transformer // Electric Power Systems Research. 2017. Vol. 152. P. 306-315. DOI: 10.1016/j.epsr.2017.07.020.

7. Аржанников Б. А., Григорьев В. Ф., Бондаренко А. В. Исследование гармонических составляющих токов в трансформаторном агрегате с вольтодобавочным трансформатором // Транспорт Урала. 2014. № 2 (41). С. 93-97.

88

8. Дорожко С. В. Диагностика однофазного силового трансформатора в рабочем режиме // Известия высших учебных заведений. Электромеханика. 2015. № 1. С. 49-50. DOI: 10.17213/0136-3360-2015-1-49-52.

9. Ланкин А. М., Ланкин М. В. Метод измерения веберамперной характеристики электротехнических устройств // Современные проблемы науки и образования. 2014. № 1. С. 246.

10. Ланкин А. М., Ланкин М. В., Гречихин В. В. [и др.]. Определение гистерезисных магнитных характеристик методом решения обратной задачи гармонического баланса // Фундаментальные исследования. 2015. Т. 2, № 8. С. 303–306.

 Андреенков Е. С., Артемов А. И. Оценка погрешностей трансформаторов напряжения при несинусоидальной нагрузке // Вестник Кузбасского государственного технического университета. 2016. № 1 (113). С. 98-105.

12. Федоров В. Л. Однофазный трансформатор как источник токов высших гармоник // Динамика систем, механизмов и машин. 2017. Т. 5, № 3. С. 118—123. DOI: 10.25206/2310-9793-2017-5-3-118-123.

13. ГОСТ 32144-2013. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. Введ. 2014-07-01. М.: Стандартинформ, 2014. 16 с.

14. IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems // IEEE Std 519-2014. 11 June 2014. P. 1-29 DOI: 10.1109/IEEESTD.2014.6826459.

15. IEEE Standard General Requirements for Liquid-Immersed Distribution, Power, and Regulating Transformers // ANSI/IEEE Std C57.12.00-1987. 1 April 1988. P. 1–31. DOI: 10.1109/IEEESTD.1988.81002.

16. Harmonic detection and filtering. Technical leaflet. 2008. URL: http://www.schneider-electric.com/en/download/ document/DBTP152GUI_EN/ (дата обращения: 25.06.2018).

ФЕДОРОВ Владимир Леонидович, кандидат технических наук, доцент (Россия), доцент кафедры «Электрическая техника». SPIN-код: 2438-9854 AuthorID (РИНЦ): 205378 ORCID: 0000-002-8266-493X AuthorID (SCOPUS): 57201722424 ResearcherID: T-9673-2017 Адрес для переписки: omgtuyan@yandex.ru

Для цитирования

Федоров В. Л. Критерий определения числа гармоник рядов Фурье, аппроксимирующих напряжения и токи трансформатора // Омский научный вестник. 2018. № 5 (161). С. 82-89. DOI: 10.25206/1813-8225-2018-161-82-89.

Статья поступила в редакцию 12.09.2018 г. © В. Л. Федоров