

Т. А. НОВОЖИЛОВ¹А. Н. НОВОЖИЛОВ²А. О. ЮСУПОВА²

¹Омский государственный технический университет, г. Омск ²Павлодарский государственный университет имени С. Торайгырова, г. Павлодар, Республика Казахстан

МОДЕЛИРОВАНИЕ ЭЛЕКТРИЧЕСКОЙ ЕМКОСТИ ИЗМЕРИТЕЛЬНОГО ПРЕОБРАЗОВАТЕЛЯ

Современные вращающиеся электрические машины широко используются в электроэнергетике для производства электроэнергии и в качестве привода. Одним из их характерных механических повреждений является эксцентриситет ротора.

В настоящее время для выявления эксцентриситета ротора в основном используются методы, основанные на измерении величин вызванных появлением дополнительных магнитных полей. Однако их чувствительность ограничена необходимостью отстройки от помех, вызванных колебанием электрических параметров питающей сети и нагрузки. В этом отношении более перспективны системы диагностики эксцентриситета ротора, у которых в качестве измерительного преобразователя используются емкостные датчики. Однако метод расчета параметров измерительного преобразователя со сложной формой электродов отсутствует.

В предлагаемой работе представлен простой метод расчета емкостного измерительного преобразователя с произвольной формой электродов, основанный на моделировании электростатического поля этого преобразователя методом сеток и расчетом емкости по приведенной эмпирической формуле. Осуществлена проверка адекватности этого метода на примере определения емкости плоского конденсатора, величина которого определялась с использованием предлагаемого метода и по классической формуле. Показано, что погрешность моделирования не превысила 5 %.

В качестве примера использования данного метода осуществлено определение емкости для электродов с зубчатой поверхностью ротора электрической машины в разных положениях пластины измерительного преобразователя относительно раскрытия паза. Приведен принцип формирования граничных условий и картины распределения потенциалов электростатического поля, а также рассчитаны емкости.

Ключевые слова: методика диагностики, эксцентриситет ротора, емкостные измерительные преобразователи.

В электроэнергетике, например, при диагностировании электрических машин (ЭМ) из-за их простоты и надежности все большую популярность приобретают методы, в которых измерение перемещения элементов электрических машин осуществляется с помощью емкостных измерительных преобразователей (ИП) [1-4]. Как известно, изменение емкости этих преобразователей может происходить не только за счет перемещения контролируемого элемента машины, но и за счет вращения его на валу. Примером [4] этого может служить измерение эксцентриситета ротора в процессе эксплуатации, когда один из электродов ИП имеет постоян-

ные геометрические размеры, а другой представлен поверхностью вращающегося зубчатого сердечника ротора, как это показано на рис. 1а: 1 и 2 — сердечники статора и ротора; 3 — пазовый клин; 4 — электрод емкостного ИП; 5 — воздушный зазор ЭМ.

В связи с тем, что емкость ИП в процессе вращения ротора меняется не только от величины эксцентриситета ротора, но и от следующих вдоль его электрода открытых пазов ротора разработка средств диагностирования эксцентриситета ротора ЭМ становится невозможной без моделирования величины емкости преобразователя в зависимости от этих факторов.

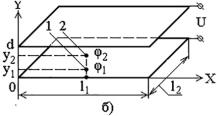


Рис. 1. Конструкционные особенности ЭМ и расчетная схема

Как известно [5-7], существует много способов определения емкости конденсатора с произвольной формой электродов. Однако их анализ показал, что некоторые из них очень сложно реализовать даже при использовании средств вычислительной техники. В других рассмотрены только частные случаи поверхности электродов. А остальные не удовлетворяют требуемой точности. В связи с этим электрическую емкость двух электродов произвольной формы предлагается определять следующим образом.

В соответствии с [8] напряженность электростатического потенциального поля в любой точке между двумя электродами этого конденсатора является величиной постоянной. В связи с этим и рис. 1

$$E = \frac{U}{d} = \frac{\varphi_2 - \varphi_1}{y_2 - y_1} = \frac{\Delta \varphi}{\Delta y},\tag{1}$$

где ϕ_1 и ϕ_2 — потенциалы электростатического поля в точках 1 и 2 относительно нижней пластины конденсатора; y_1 и y_2 — координаты у точек 1 и 2.

U и d — напряжение и расстояние между электродами конденсатора.

Тогда с учетом соотношений уравнения (1) для определения емкости воздушного плоского конденсатора можно воспользоваться эмпирической зависимостью

$$C = \varepsilon_0 l_1 l_2 \frac{\varphi_2 - \varphi_1}{y_2 - y_1} = \varepsilon_0 l_1 l_2 \frac{\Delta \varphi}{\Delta y}, \tag{2}$$

где $l_{_1}$ и $l_{_2}$ — ширина и длина электродов конденсатора; $\varepsilon_{_0}$ — диэлектрическая постоянная вакуума.

Так как электростатическое поле конденсатора является потенциальным и в нем отсутствуют свободные источники электрического поля, то для его описания с учетом схемы на рис. 1 и [8, 9] используется уравнение Лапласа

$$\partial^2 \varphi / \partial x^2 + \partial^2 \varphi / \partial y^2 = 0 \tag{3}$$

Из анализа [8-10] становится ясно, что получение аналитического выражения путем непосредственного решения уравнения (3) при сложной форме электродов представляется трудной, а иногда и неразрешимой задачей. В то же время эту задачу достаточно просто решить с помощью метода сеток. В нем частные производные уравнения Пуассона (3) для *i, k-*го узла на рис. 2 заменяются выражениями

$$\frac{\partial^2 \varphi_x}{\partial y^2} \approx \frac{\varphi_{x(i,k+1)} - 2\varphi_{x(i,k)} + \varphi_{x(i,k-1)}}{h^2}; \tag{4}$$

$$\frac{\partial^2 \varphi_x}{\partial z^2} \approx \frac{\varphi_{x(i+1,k)} - 2\varphi_{x(i,k)} + \varphi_{x(i-1,k)}}{h^2} . \tag{5}$$

В результате в і, к-том узле потенциал электростатического поля определяется как

$$\phi_{x(i,k)} = \frac{1}{4} \Big(\phi_{x(i+1,k)} + \phi_{x(i-1,k)} + \phi_{x(i,k+1)} + \phi_{x(i,k-1)} \Big).$$
 (6)

Проверку адекватности такой математической модели для решения подобного рода задач проще всего осуществить на примере определения емкости воздушного плоского конденсатора. Так, в соответствии с [8] и рис. 1б емкость плоского конденсатора

$$C = \varepsilon_0 l_1 l_2 / d. \tag{7}$$

При использовании метода сеток для моделирования электростатического поля между электродами МП исследуемая область с помощью $k_m + 2$ горизонтальных и $i_{\scriptscriptstyle m}$ + 2 вертикальных линий как по-

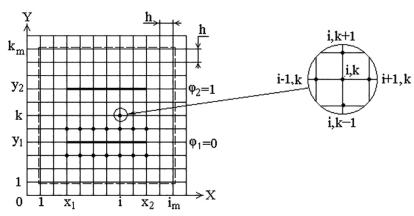


Рис. 2. Расчетная схема

ς,

казано на рис. 2, разбивается на квадратные клетки со стороной h. Пересекаясь, k-я горизонтальная линия с i-ой вертикальной линией образуют i, k-й узел, где k_m и i_m — число узлов в исследуемой области по вертикали и горизонтали, в которых осуществляется расчет потенциала электростатического поля по уравнению (6). На рис. 2 эти узлы находятся в области, очерченной пунктирной линией. Ширина электродов l_1 конденсатора и расстояние d между его электродами на расчетной схеме задаются как

$$l_{1} = x_{2} - x_{1} \text{ if } d = y_{2} - y_{1}, \tag{8}$$

где $x_{_1}, x_{_2}$ и $y_{_1}, y_{_2}$ — координаты расположения электродов конденсатора в клетках.

При моделировании электростатического поля потенциал ϕ_2 верхнего электрода принимается равным единице, а нижнего ϕ_1 — нулю. Всем узлам с координатами k=0 и $k=k_m+1$ после каждой итерации присваиваются потенциалы узлов с k=1 и $k=k_m$, а всем узлам с координатой i=0 и $i=i_m+1$ после каждой итерации присваиваются потенциалы узлов с i=1 и $i=i_m$, что для данного типа задачи это является граничными условиями.

Потенциалы каждого узла в очерченной зоне рассчитывают с помощью компьютера по методу итераций, который предусматривает расчет с потенциалов, начиная с левого нижнего угла и затем обратно с правого верхнего угла этой зоны. После каждой итерации граничные условия выставляются вновь, а количество итераций выбирается таким, чтобы достичь наименьших погрешностей.

После расчета потенциалов в узлах емкость конденсатора рассчитывается с учетом математического выражения (2) как

$$C = \varepsilon_0 l_1 l_2 \frac{\sum_{1}^{N} \varphi_n / N - \varphi_1}{h} = \varepsilon_0 l_1 l_2 \frac{\sum_{1}^{N} \varphi_n}{N h}, \tag{9}$$

 ϕ_n — потенциалы всех узлов, прилегающих к электроду с $\phi_1=0$; N — число узлов, прилегающих к электроду ИП с $\phi_1=0$. На рис. 2 все узлы, которые прилегают к электроду с потенциалом $\phi_1=0$, помечены точками.

Если для расчетной схемы на рис. 2 принять h=0.01 м, $k_{\scriptscriptstyle m}=11$ и $i_{\scriptscriptstyle m}=11$ клеток, а координаты $x_{\scriptscriptstyle 1}=3$, $x_{\scriptscriptstyle 2}=9$ и $y_{\scriptscriptstyle 1}=4$, $y_{\scriptscriptstyle 2}=8$, то результаты моделирования потенциалов в узлах можно представить в виде таблицы, приведенной на рис. 3.

При этом величина емкости ИП, рассчитанной по математическому выражению (9), и с использованием метода сеток равнялась 1,55 пФ и 1,442 пФ соответственно. При этом погрешность расчета по методу сеток составила 7,001 %. Таким образом, такой подход к определению емкости воздушного ИП прост и обладает достаточной для реализации систем диагностики точностью.

Используя предложенную модель, можно достаточно просто оценить колебание емкости ИП при вращении ротора асинхронного двигателя (АД) с открытыми пазами. Если принять ширину ИП l_1 , величину воздушного зазора δ и ширину раскрытия паза ротора b_{n1} равными 5, 3 и 3 клеткам, то результаты моделирования потенциалов в узлах при расположении электрода ИП над раскрытием паза ротора можно представить в виде таблицы, приведенной на рис. 4. При этом величина емкости ИП равнялась 2,628 пФ. В то же время при расположении электрода ИП над серединой зубца рото-

	0.00	0.76	0.77	0.78	0.80	0.80	0.80	0.80	0.78	0.77	0.75	0.74	0.00
kт	0.76	0.76	0.77	0.78	0.80	0.80	0.80	0.80	0.78	0.77	0.75	0.74	0.74
	0.75	0.75	0.77	0.79	0.80	0.81	0.81	0.80	0.79	0.77	0.74	0.73	0.73
	0.73	0.73	0.76	0.79	0.81	0.82	0.83	0.82	0.80	0.76	0.73	0.71	0.71
	0.67	0.67	0.69	1.88	1.00	1.00	1.88	1.00	1.00	1.00	0.70	0.67	0.67 φ=1
	0.58	0.58	0.60	0.62	0.66	0.67	0.67	0.67	0.67	0.66	0.63	0.61	0.61
	0.49	0.49	0.48	0.48	0.49	0.50	0.50	0.50	0.51	0.51	0.51	0.51	0.51
	0.39	0.39	0.36	0.34	0.33	0.33	0.33	0.33	0.34	0.38	0.40	0.41	0.41
	0.33	0.33	0.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	0.33	0.33 φ=0
	0.29	0.29	0.27	0.23	0.19	0.18	0.17	0.18	0.19	0.21	0.24	0.27	0.27
	0.26	0.26	0.25	0.23	0.21	0.19	0.19	0.19	0.20	0.21	0.23	0.25	0.25
1	0.25	0.25	0.24	0.23	0.21	0.20	0.19	0.19	0.20	0.21	0.23	0.24	0.24
	0.00	0.25	0.24	0.23	0.21	0.20	0.19	0.19	0.20	0.21	0.23	0.24	0.00
		1										i m	

Рис. 3. Результаты моделирования потенциалов в узлах электростатического поля двух плоских электродов

	φ=0						φ=1			φ=0				
_	0.00	0.00	0.00	0.39	1.00	1.00	1.00	1.00	1.00	0.42	0.00	0.00	0.00	
Κm	0.00	0.00	0.00	0.39	1.00	1.00	1.00	1.00	1.00	0.42	0.00	0.00	0.00	
	0.12	0.12	0.19	0.32	0.50	0.61	0.64	0.61	0.53	0.38	0.21	0.12	0.12	
	0.13	0.13	0.17	0.25	0.35	0.42	0.44	0.42	0.36	0.27	0.19	0.14	0.14	
	0.09	0.09	0.11	0.16	0.22	0.27	0.29	0.27	0.22	0.17	0.13	0.10	0.10	
	0.00	0.00	0.00	0.00	0.00	0.16	0.18	0.16	0.00	9.99	0.00	0.00	0.00	
	0.00	0.00	0.00	0.00	0.00	0.08	0.10	0.09	0.00	0.00	0.00	9.99	0.00	
	0.00	0.00	0.00	0.00	0.00	0.04	0.06	0.05	0.00	0.00	0.00	0.00	0.00	
	0.00	0.00	0.00	0.00	0.00	0.02	0.03	0.03	0.00	0.00	0.00	0.00	0.00	
	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.02	0.00	0.00	0.00	0.00	0.00	
_	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.00	9.99	0.00	
1	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	
	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	
	1 φ=0									φ=	=0	i m		

Рис. 4. Результаты моделирования потенциалов в узлах электростатического поля плоского электрода и зоны воздушного зазора над раскрытием паза АД

			$\varphi=1$				φ=0				$\varphi=1$		
	0.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00	1.00	0.00
Κm	1.00	1,00	1,00	1,00	0.00	0.00	0.00	0.00	0.00	1.00	1.88	1.00	1.00
	0.62	0.62	0.58	0.48	0.30	0.16	0.13	0.15	0.25	0.44	0.59	0.65	0.65
	0.41	0.41	0.38	0.32	0.24	0.17	0.14	0.16	0.21	0.30	0.38	0.42	0.42
	0.23	0.23	0.22	0.19	0.16	0.13	0.12	0.12	0.14	0.18	0.22	0.24	0.24
	0.00	0.00	0,00	0.00	0.00	0.09	0.08	0.08	0.00	0.00	0.00	0.00	0.00
	0.00	0,00	0.00	0.00	0.00	0.04	0.05	0.05	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	9.99	0.02	0.03	0.03	0.00	00.00	00.00	0.00	0.00
	0.00	9.99	0.00	0.00	0.00	0.01	0.02	0.02	0.00	0.00	0.00	0.00	0.00
	0.00	9,99	0.00	0.00	0.00	0.01	0.01	0.01	0.00	00.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	00.00	0.00	0.00	0.00
1	0.00	9.99	9.99	9.99	9.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		1	φ=	:0						φ	=0	i m	

Рис. 5. Результаты моделирования потенциалов в узлах электростатического поля плоского электрода и зоны воздушного зазора над серединой зубца ротора АД

ра эта емкость равнялась 2,736 пФ, как показано на рис. 5.

Таким образом, емкость ИП при вращении ротора АД можно представить в виде

$$C_{un} = C_{un,0} + C_{un,m} \sin(2\pi f_2 t), \tag{10}$$

где $C_{un,0}$ и $C_{un,m}$ — постоянная составляющая и амплитуда переменной составляющей емкости ИП; $f_2=n~Z_2/60$ — частота колебаний переменной составляющей емкости ИП; n — число оборотов ротора в минуту; t — время.

По результатам определения сеток на рис. 4 величины емкостей $C_{un,0}\!=\!2,\!682$ пФ и $C_{un,m}\!=\!=\!0.054$ пФ.

Из приведенного примера становится ясно, что предложенный метод позволяет просто и с приемлемой точностью моделировать емкость ИП, например, для системы диагностики эксцентриситета ротора, причем независимо от формы электродов.

Библиографический список

- 1. Новожилов А. Н., Юсупова А. О., Новожилов Т. А. Выбор метода выявления эксцентриситета ротора электрической машины // Вестник ПГУ. Энергетическая серия. 2016. № 4. С. 117—126.
- 2. Beker L., Maralani A., Lin L. Modeling, fabrication, and characterization of SiC concentrically matched differential capacitance output pressure sensors // Sensors and Actuators A: Physical. 2018. Vol. 273. P. 293 302. DOI: 10.1016/j. sna.2018.02.027.
- 3. Hu H. L., Xu T. M., Hui S. E. A high-accuracy, high-speed interface circuit for differential-capacitance transducer // Sensors and Actuators A: Physical. 2006. Vol. 125, Issue 2. P. 329-334. DOI:10.1016/j.sna.2005.08.009.
- 4. Ацюковский В. А. Емкостные дифференциальные датчики перемещения емкости. М.: Госэнергоиздат, 1960. 102 с.
- Расчет электрической емкости / Под ред. Ю. Я. Йосселя, Э. С. Кочанова, М. Г. Струнского. 2-е изд., перераб. и доп. М.: Энергоиздат, 1981. 288 с.
- 6. Джежора А. А. Электроемкостные преобразователи и методы их расчета. Минск: Белорусская наука, 2008. 352 с. ISBN 978-985-08-0888-2.

- 7. Kawa A., Stala R. The Multilevel switched capacitor power converter. Experimental proof of concept // Przeglad Elektrotechniczny. 2017. Vol. 9. P. 16–19. DOI: 10.15199/48.2017.09.03.
- 8. Бессонов Л. А. Теоретические основы электротехники. М.: Высшая школа, 1967. 775 с.
- 9. Turowski J. Obliczenia elektromagneτγczne elementow maszyn i urzadzen elektrycznych. Warszawa: Wydawnictwa Naukowo-Techniczne, 1982. 200 p.
- 10. Гринберг Г. А. Избранные вопросы математической теории электрических и магнитных явлений. М.: АН СССР, 1948. 727 с.

НОВОЖИЛОВ Тимофей Александрович, кандидат технических наук, доцент кафедры «Электроснабжение промышленных предприятий» Омского государственного технического университета.

SPIN-код: 1328-6928 AuthorID (РИНЦ): 554534

Адрес для переписки: timokvey@mail.ru

НОВОЖИЛОВ Александр Николаевич, доктор технических наук, профессор (Республика Казахстан), профессор кафедры «Электроэнергетика» Павлодарского государственного университета им. С. Торайгырова (ПГУ).

SPIN-код: 2733-2943

AuthorID (РИНЦ): 189494

Адрес для переписки: novozhilova_on@mail.ru

ЮСУПОВА Асель Оразовна, магистр электроэнергетики, докторант кафедры «Электроэнергетика» ПГУ.

Адрес для переписки: aselasp@mail.ru

Для цитирования

Новожилов Т. А., Новожилов А. Н., Юсупова А. О. Моделирование электрической емкости измерительного преобразователя // Омский научный вестник. 2018. № 5 (161). С. 72-75. DOI: 10.25206/1813-8225-2018-161-72-75.

Статья поступила в редакцию 25.07.2018 г. © Т. А. Новожилов, А. Н. Новожилов, А. О. Юсупова